Pelajaran IPA Klasifikasi Materi dan Perubahannya

Pelajaran Bimbel Jakarta Timur

Tiga klasifikasi materi dalam bentuk fisik berbeda di sebagian besar lingkungan adalah : padat, cair, dan gas. Di lingkungan ekstrim, klasifikasi materi lain mungkin ada yang seperti plasma, kondensat Bose-Einstein, dan bintang neutron.

Klasifikasi yang lebih lanjut, seperti plasma quark-gluon, juga diyakini kemungkinannya . Karena sebagian besar materi atom alam semesta adalah plasma panas dalam bentuk bintang padat dan menengah antarbintang yang langka.

Secara historis, Klasifikasi materi dibedakan berdasarkan perbedaan kualitatif dalam sifat massal mereka. Padat adalah Klasifikasi di mana materi mempertahankan volume dan bentuk yang tetap; cair adalah Klasifikasi di mana materi menyesuaikan diri dengan bentuk wadahnya tetapi volumenya hanya sedikit berbeda; dan gas adalah Klasifikasi di mana materi memuai untuk menempati volume dan bentuk wadahnya. Masing-masing dari ketiga Klasifikasi klasik materi ini dapat bertransisi langsung ke salah satu dari dua Klasifikasi klasik lainnya.

Padatan
Partikel benda padat tersusun rapat. Gaya antar partikel cukup kuat sehingga partikel tidak dapat bergerak bebas; mereka hanya bisa bergetar. Akibatnya, benda padat memiliki bentuk yang stabil, tetap, dan volume tetap. Benda padat hanya dapat berubah bentuk karena gaya, seperti saat patah atau dipotong.

Dalam padatan kristal, partikel dikemas dalam pola yang teratur dan berulang. Ada banyak struktur kristal yang berbeda, dan zat yang sama dapat memiliki lebih dari satu struktur. Misalnya, besi memiliki struktur kubik berpusat pada tubuh pada suhu di bawah 912 °C dan struktur kubik berpusat pada muka antara 912 dan 1394 °C. Es memiliki lima belas struktur kristal yang diketahui, masing-masing ada pada suhu dan tekanan yang berbeda.

Benda padat dapat berubah wujud menjadi cair melalui proses peleburan, dan zat cair dapat berubah wujud menjadi padat melalui proses pembekuan. Zat padat juga dapat langsung berubah menjadi gas melalui proses yang disebut sublimasi.

Cairan
Cairan adalah cairan yang sesuai dengan bentuk wadahnya tetapi mempertahankan volume yang hampir konstan terlepas dari tekanan. Volumenya pasti (tidak berubah) jika suhu dan tekanannya konstan. Ketika zat padat dipanaskan di atas titik lelehnya, zat itu menjadi cair karena tekanannya lebih tinggi dari titik tripel zat tersebut. Gaya antarmolekul (atau interatomik atau interionik) masih penting, tetapi molekul memiliki energi yang cukup untuk bergerak, yang membuat struktur bergerak. Ini berarti bahwa zat cair tidak tetap bentuknya tetapi lebih sesuai dengan bentuk wadahnya. Volumenya biasanya lebih besar dari padatan yang sesuai (air adalah pengecualian yang terkenal untuk aturan ini). Suhu tertinggi di mana cairan tertentu dapat eksis disebut suhu kritisnya.

Cairan dapat diubah menjadi gas melalui pemanasan pada tekanan konstan ke titik didih zat atau melalui pengurangan tekanan pada suhu konstan. Proses perubahan zat cair menjadi gas disebut penguapan.

Gas
Molekul gas memiliki ikatan yang sangat lemah atau tidak memiliki ikatan sama sekali, sehingga mereka dapat bergerak dengan bebas dan cepat. Karena itu, gas tidak hanya akan menyesuaikan diri dengan bentuk wadahnya, tetapi juga akan memuai hingga memenuhi wadah sepenuhnya. Molekul gas memiliki energi kinetik yang cukup sehingga efek gaya antarmolekul kecil (atau nol, untuk gas ideal), dan jaraknya sangat berjauhan satu sama lain; jarak tipikal antara molekul tetangga jauh lebih besar daripada ukuran molekul itu sendiri.

Gas pada suhu di bawah suhu kritisnya juga dapat disebut uap. Uap dapat dicairkan melalui kompresi tanpa pendinginan. Itu juga bisa ada dalam kesetimbangan dengan cairan (atau padat), dalam hal ini tekanan gas sama dengan tekanan uap cairan (atau padat).

Fluida superkritis/supercritical fluid (SCF) adalah gas yang temperatur dan tekanannya lebih besar dari temperatur kritis dan tekanan kritis. Dalam Klasifikasi ini, perbedaan antara cairan dan gas menghilang. Fluida superkritis memiliki sifat fisik gas, tetapi kerapatannya yang tinggi membuatnya memiliki sifat pelarut dalam beberapa kasus. Ini dapat berguna dalam beberapa aplikasi. Misalnya, karbon dioksida superkritis digunakan untuk mengekstrak kafein dalam pembuatan kopi tanpa kafein.

Zat dan Campuran
Zat tersusun atas unsur murni atau unsur yang terikat secara kimia, sedangkan campuran tersusun atas zat yang tidak terikat.

Zat Kimia
Dalam kimia, zat kimia adalah bentuk materi yang memiliki komposisi kimia dan sifat karakteristik yang konstan. Itu tidak dapat dipisahkan menjadi komponen tanpa memutuskan ikatan kimia. Zat kimia dapat berupa padatan, cairan, gas, atau plasma. Perubahan suhu atau tekanan dapat menyebabkan zat bergeser di antara fase materi yang berbeda.

Unsur adalah zat kimia yang terdiri dari jenis atom tertentu dan karenanya tidak dapat dipecah atau diubah oleh reaksi kimia menjadi unsur yang berbeda. Semua atom suatu unsur memiliki jumlah proton yang sama, meskipun mereka mungkin memiliki jumlah neutron dan elektron yang berbeda.

Senyawa kimia murni adalah zat kimia yang terdiri dari sekumpulan molekul atau ion tertentu yang terikat secara kimia. Dua atau lebih unsur digabungkan menjadi satu zat melalui reaksi kimia, seperti air, membentuk senyawa kimia. Semua senyawa adalah zat, tetapi tidak semua zat adalah senyawa. Senyawa kimia dapat berupa atom yang terikat bersama dalam molekul atau kristal di mana atom, molekul atau ion membentuk kisi kristal. Senyawa yang terutama terdiri dari atom karbon dan hidrogen disebut senyawa organik, dan yang lainnya disebut senyawa anorganik. Senyawa yang mengandung ikatan antara karbon dan logam disebut senyawa organologam.

Zat kimia sering disebut 'murni' untuk membedakannya dari campuran. Contoh umum zat kimia adalah air murni; itu selalu memiliki sifat yang sama dan rasio hidrogen terhadap oksigen yang sama apakah itu diisolasi dari sungai atau dibuat di laboratorium. Zat kimia lain yang biasa dijumpai dalam bentuk murni adalah intan (karbon), emas, garam dapur (natrium klorida), dan gula rafinasi (sukrosa). Zat sederhana atau tampaknya murni yang ditemukan di alam sebenarnya bisa menjadi campuran zat kimia. Misalnya, air keran mungkin mengandung sejumlah kecil natrium klorida terlarut dan senyawa yang mengandung zat besi, kalsium, dan banyak zat kimia lainnya. Air suling murni adalah zat, tetapi air laut, karena mengandung ion dan molekul kompleks, adalah campuran.

Campuran Kimia
Campuran adalah sistem materi yang terdiri dari dua atau lebih zat yang berbeda, yang dicampur tetapi tidak digabungkan secara kimia. Campuran mengacu pada kombinasi fisik dari dua atau lebih zat di mana identitas masing-masing zat dipertahankan. Campuran berbentuk paduan, larutan, suspensi, dan koloid.

Campuran Heterogen
Campuran heterogen adalah campuran dua atau lebih zat kimia (unsur atau senyawa), di mana komponen yang berbeda dapat dibedakan secara visual dan mudah dipisahkan dengan cara fisik. Contohnya meliputi:
  • campuran pasir dan air
  • campuran serbuk pasir dan besi
  • batu konglomerat
  • air dan minyak
  • sebuah salad
  • campuran bubuk emas dan bubuk perak

Campuran Homogen
Campuran homogen adalah campuran dua atau lebih zat kimia (unsur atau senyawa), di mana komponen yang berbeda tidak dapat dibedakan secara visual. Seringkali memisahkan komponen campuran homogen lebih menantang daripada memisahkan komponen campuran heterogen.

Membedakan antara campuran homogen dan heterogen adalah masalah skala pengambilan sampel. Pada skala yang cukup kecil, campuran apapun dapat dikatakan heterogen, karena sampel bisa sekecil molekul tunggal. Dalam istilah praktis, jika properti yang diinginkan adalah sama terlepas dari berapa banyak campuran yang diambil, campuran tersebut homogen.

Sifat fisik campuran, seperti titik lelehnya, mungkin berbeda dari masing-masing komponennya. Beberapa campuran dapat dipisahkan menjadi komponen-komponennya dengan cara fisik (mekanis atau termal).

Unsur dan Senyawa
Unsur adalah materi yang terdiri dari satu jenis atom, sedangkan senyawa terdiri dari dua atau lebih jenis atom.

Elemen
Unsur kimia adalah zat murni yang terdiri dari satu jenis atom. Setiap atom memiliki nomor atom, yang mewakili jumlah proton yang ada dalam inti atom tunggal unsur itu. Tabel periodik unsur disusun berdasarkan nomor atom menaik.

Unsur-unsur kimia dibagi menjadi logam, metaloid, dan non-logam. Logam, adalah:
  • sering konduktif terhadap listrik
  • lunak
  • berkilau
  • terkadang magnetis.
  • Aluminium, besi, tembaga, emas, merkuri, dan timbal adalah logam.

Sebaliknya, non-logam, adalah:
  • biasanya tidak konduktif
  • tidak bisa ditempa
  • kusam (tidak mengkilap)
  • tidak magnetis.
  • Contoh unsur non-logam termasuk karbon dan oksigen.

Metaloid memiliki beberapa karakteristik logam dan beberapa karakteristik non-logam. Silikon dan arsenik adalah metaloid.

Hingga November 2011, 118 elemen telah diidentifikasi (yang terakhir diidentifikasi adalah ununseptium, pada 2010). Dari 118 elemen yang diketahui ini, hanya 98 pertama yang diketahui terjadi secara alami di Bumi. Unsur-unsur yang tidak terjadi secara alami di Bumi adalah produk sintetis dari reaksi nuklir buatan manusia. 80 dari 98 elemen yang terjadi secara alami adalah stabil; sisanya adalah radioaktif, yang berarti mereka meluruh menjadi elemen yang lebih ringan dalam rentang waktu mulai dari sepersekian detik hingga miliaran tahun.

Hidrogen dan helium sejauh ini merupakan unsur yang paling melimpah di alam semesta. Namun, besi adalah unsur yang paling melimpah (berdasarkan massa) dalam komposisi Bumi, dan oksigen adalah unsur paling umum di lapisan yang merupakan kerak bumi.

Meskipun semua materi kimia yang diketahui terdiri dari unsur-unsur ini, materi kimia itu sendiri hanya sekitar 15% dari materi di alam semesta. Sisanya adalah materi gelap, zat misterius yang tidak terdiri dari unsur-unsur kimia. Materi gelap tidak memiliki proton, neutron, atau elektron.

Senyawa
Sampel murni dari elemen terisolasi jarang terjadi di alam. Sementara 98 elemen yang terjadi secara alami semuanya telah diidentifikasi dalam sampel mineral dari kerak bumi, hanya sebagian kecil dari mereka yang dapat ditemukan sebagai mineral yang dapat dikenali dan relatif murni. Di antara yang lebih umum dari "elemen asli" seperti itu adalah tembaga, perak, emas, dan belerang. Karbon juga banyak ditemukan dalam bentuk batubara, grafit, dan intan. Gas mulia (misalnya, neon) dan logam mulia (misalnya, merkuri) juga dapat ditemukan dalam bentuk murni dan tidak terikat di alam. Namun, sebagian besar elemen ini ditemukan dalam campuran.

Ketika dua unsur berbeda digabungkan secara kimia—yaitu, ikatan kimia terbentuk di antara atom-atomnya—hasilnya disebut senyawa kimia. Sebagian besar unsur di Bumi berikatan dengan unsur lain untuk membentuk senyawa kimia, seperti natrium (Na) dan Klorida (Cl), yang bergabung membentuk garam meja (NaCl). Air adalah contoh lain dari senyawa kimia. Dua atau lebih unsur penyusun suatu senyawa dapat dipisahkan melalui reaksi kimia.

Senyawa kimia memiliki struktur yang unik dan terdefinisi, yang terdiri dari rasio tetap atom yang disatukan dalam pengaturan spasial yang ditentukan oleh ikatan kimia. Senyawa kimia dapat berupa:
  • senyawa molekul yang disatukan oleh ikatan kovalen
  • garam yang diikat oleh ikatan ion
  • senyawa intermetalik yang disatukan oleh ikatan logam
  • Senyawa kompleks yang digabung dalam ikatan kovalen koordinat.

Unsur kimia murni tidak dianggap senyawa kimia, bahkan jika mereka terdiri dari molekul diatomik atau poliatomik (molekul yang hanya mengandung beberapa atom dari satu unsur, seperti H2 atau S8).

Di sekitar kita, kita menemukan hal-hal yang berbeda dalam bentuk, ukuran, tinggi, struktur, dan tekstur. Menurut para ilmuwan segala sesuatu di alam semesta ini terdiri dari bahan yang disebut 'materi'. Kita dapat melihat bahwa materi menempati beberapa ruang dan massa, dengan cara lain kita dapat mengatakan bahwa materi memiliki beberapa 'volume' dan 'massa'. 

Namun, pada zaman kuno tidak ada petunjuk bagi para ilmuwan oleh karena itu pada saat itu para Filsuf India percaya bahwa segala sesuatu di alam semesta ini baik yang hidup maupun yang tidak hidup dapat dibagi menjadi 'panch tattvas yaitu Udara, Air, Api, Langit, dan Bumi.

Materi mengacu pada hal-hal material di sekitar kita yang memiliki massa, ruang yang ditempati dan kehadirannya dapat dirasakan oleh salah satu atau lebih dari panca indera kita. Segala sesuatu di alam semesta ini terdiri dari materi yang oleh para ilmuwan disebut 'materi'.

Misalnya- air, udara, bintang, tanaman, setetes air, atau bahkan partikel pasir kecil adalah materi, tetapi emosi seperti cinta, benci, sakit hati, dll. adalah perasaan tetapi bukan materi.
  •  Materi adalah segala sesuatu yang menempati ruang dan memiliki massa.
  •  Ruang: Ruang yang ditempati oleh suatu zat dikenal sebagai 'volume'.
  •  Massa: Jumlah logam yang ada dalam suatu benda disebut 'massa'.

Klasifikasi Materi
Filsuf India awal mengklasifikasikan materi dalam bentuk 5 elemen dasar sebagai Udara, Bumi, Api, Langit, dan Air yang disebut 'panch tatva'. Filsuf Yunani kuno juga menerapkan klasifikasi materi yang serupa. Klasifikasi berdasarkan sifat fisik dan sifat kimia. Apa yang diamati dan diukur tanpa mengubah identitas kimia sampel seperti warna, panjang dan volume adalah sifat fisik, dan apa yang diamati dan diukur yang hanya mengubah identitas kimianya disebut sifat kimia.

Berdasarkan Klasifikasi fisik materi, itu diklasifikasikan sebagai padat, cair, dan gas. Berdasarkan komposisi kimianya, materi diklasifikasikan sebagai zat murni dan campuran. Zat murni dapat berupa unsur dan senyawa sedangkan Campuran dapat berupa campuran homogen dan campuran heterogen.

Sifat Fisik Materi
  • Suatu materi terdiri dari partikel yang sangat kecil yang mungkin berupa atom atau molekul, misalnya ketika kita melarutkan sesendok garam atau gula dalam segelas air.
  • Materi terdiri dari partikel- Partikel materi sangat kecil di luar imajinasi partikel-partikel ini memiliki ruang di antara mereka.
  • Partikel materi bergerak terus menerus – Ini karena energi kinetik yang dimiliki oleh partikel yang meningkat dengan meningkatnya suhu dan partikel bergerak lebih cepat.
  • Partikel materi menarik satu sama lain dengan gaya tarik-menarik– Gaya tarik mengikat partikel materi dalam satu tubuh dan juga mengarah pada susunan partikel. Partikel materi memiliki gaya yang bekerja di antara mereka.
  • Catatan: Gula dan garam keduanya terdiri dari partikel yang sangat kecil yang putus dari setiap butiran gula dan hilang dalam air saat dilarutkan, itulah sebabnya larutan terasa manis, tetapi partikel tidak dapat dilihat, ini menunjukkan bahwa air memiliki cukup ruang untuk menyesuaikan ( larut) gula kecil atau partikel garam.

Karakteristik Partikel Materi
  • Partikel materi memiliki ruang di antara mereka.
  • Partikel materi terus bergerak.
  • Mereka memiliki beberapa energi yang disebut energi kinetik karena suhu naik, energi kinetik partikel meningkat dan karenanya partikel bergerak cepat.
  • Partikel materi menarik satu sama lain, ada gaya tarik menarik antar partikel yang dikenal sebagai gaya tarik antarmolekul.
  • Gaya tersebut disebut gaya kohesif.

Klasifikasi Materi
  • Padat- Padat memiliki bentuk dan volume yang tetap. Misalnya - es batu dan kayu.
  • Cairan- Cairan memiliki volume yang pasti tetapi tidak memiliki bentuk yang pasti. Misalnya- air dan susu
  • Gas- Gas tidak memiliki bentuk dan volume yang pasti. Misalnya-Nitrogen, Oksigen, dll.
Plasma– Plasma dianggap sebagai materi keempat. Plasma adalah campuran elektron dan ion bebas. Itu terjadi secara alami di bintang-bintang. Di dalam bintang, suhunya sangat tinggi sehingga atom-atomnya terurai. Dan, campuran elektron dan ion bebas dalam Klasifikasi ini disebut plasma. Matahari dan Bintang lainnya bersinar karena tekanan Plasma di dalamnya. Plasma juga dapat dibuat di bumi dengan melewatkan listrik melalui gas pada suhu yang lebih rendah. Plasma membuat tabung fluoresen bersinar.
BE kondensat (bose-einstein) – Pada tahun 1921 ilmuwan India Satyendra Nath Bose melakukan beberapa perhitungan untuk Klasifikasi kelima materi. Berdasarkan perhitungan mereka, Albert Einstein meramalkan adanya Klasifikasi materi yang baru. Klasifikasi materi kelima akhirnya dicapai oleh tiga ilmuwan Cornell, Kellerie, dan Wieman dari AS yang mendinginkan gas dalam kepadatan sangat rendah hingga suhu super rendah.

Sifat Padat
  • Bentuk, ukuran, volume, dan batas yang jelas.
  • Kompresibilitas diabaikan.
  • Padatan memiliki kecenderungan untuk mempertahankan bentuknya ketika mengalami gaya luar.
  • Mereka kaku, sulit diubah bentuknya.
  • Massa per satuan volume suatu zat disebut massa jenis.
  • Gaya antarmolekul tinggi dalam padatan.
  • Energi kinetik sangat rendah dalam padatan.
  • Padatan tidak memiliki sifat difusi.
  • Karet gelang adalah benda padat karena dapat berubah bentuk di bawah gaya dan mendapatkan kembali bentuknya ketika gaya dihilangkan jika gaya yang berlebihan diterapkan, ia putus. Ini adalah kasus luar biasa dari benda padat.
  • Garam dan gula mengambil bentuk wadah tempat mereka ditempatkan, tetapi bentuk kristalnya tidak berubah, jadi mereka padat.
Sifat Cairan
  • Tidak memiliki bentuk yang pasti atau batas yang jelas tetapi memiliki volume yang tetap.
  • Mereka dapat dikompresi.
  • Dalam Sains nama umum gas dan cairan adalah fluida.
  • Cairan tidak kaku tetapi memiliki sifat mengalir itulah sebabnya cairan disebut cairan.
  • Gaya antarmolekul lebih kecil daripada padatan.
  • Dalam cairan energi kinetik lebih dari padat.
  • Cairan memiliki kepadatan sedang.
  • Cairan memiliki sifat difusi.
  • Mereka dapat mengambil bentuk apa pun.
  • Gas Oksigen dan Karbon dioksida dari atmosfer berdifusi dan larut dalam air. Karena gas-gas ini, tumbuhan dan hewan air dapat bertahan hidup.
  • Difusi jauh lebih banyak dalam cairan daripada pada padat karena pergerakan bebas partikel cairan.
Sifat Gas
  • Gas bukanlah bentuk yang pasti atau volume yang pasti.
  • Mereka dapat dikompresi banyak.
  • Gas memiliki fluiditas maksimum dan kekakuan kurang.
  • Gaya tarik antarmolekul paling kecil.
  • Energi kinetik partikelnya maksimum.
  • Gas tidak memiliki densitas.
  • Mereka dapat mengambil bentuk apa pun.
  • Difusi yang sangat cepat.
  • Partikel-partikel dalam gas bebas bergerak dan karenanya gas dapat mengalir ke segala arah. Mereka menempati semua volume yang tersedia bagi mereka.
  • LPG = Liquefied Petroleum Gas dan CNG = Compressed Natural Gas yang merupakan bahan bakar kendaraan.
Berikutnya kita akan bahas rumus dan perhitungan dalam soal dan pembahasan:


Tag:

klasifikasi materi dan perubahannya pdf
klasifikasi materi dan perubahannya kelas 7
klasifikasi materi dan perubahannya kelas 10
contoh klasifikasi materi dan perubahannya
klasifikasi materi dan perubahannya kelas 7 pdf
klasifikasi materi dan perubahannya kelas 7 kurikulum 2013 pdf
uji kompetensi klasifikasi materi dan perubahannya
mind mapping klasifikasi materi dan perubahannya
soal klasifikasi materi dan perubahannya
soal klasifikasi materi dan perubahannya essay
soal essay materi dan perubahannya kelas 10 smk
buatlah 20 soal tentang bab materi dan perubahannya
kisi kisi soal klasifikasi materi dan perubahannya
kumpulan soal materi dan perubahannya kelas 10
soal klasifikasi materi dan perubahannya kelas 7 pdf
soal hots klasifikasi materi dan perubahannya

on Monday, November 23, 2020 | , , , , | A comment?

Volume dan Luas Permukaan Bangun Ruang Gabungan

 

Bangun Ruang Gabungan yaitu dua atau lebih bangun ruang yang digabung dengan bertumpuk berlekatan atau berada dalam salah satu bangun ruang tertentu. Adapun yang akan kita bahas pada tulisan ini adalah bangun ruang yang bertumpuk ataupun berlekatan.


Bangun Ruang adalah bangun yang terdiri dari padatan geometris umum. Padatan yang terdiri dari umumnya prisma, piramida, kerucut, silinder dan bola. Untuk menemukan luas permukaan dan volume gabungan padatan, kita perlu mengetahui cara menemukan luas permukaan dan volume prisma, piramida, kerucut, silinder, dan bola.

Luas permukaan total dari Bangun Ruang Gabungan yaitu jumlah dari total luas permukaan dari masing-masing dari bangun ruang gabungan, tidak termasuk bagian yang tumpang tindih dari setiap gambar. Sedangkan volume padatan gabungan adalah jumlah volume dari masing-masing padatan yang membentuk padatan gabungan.

Volume bangun ruang gabungan adalah jumlah volume dari bangun ruang-bangun ruang yang tergabung dalam soal yang dimaksud. Jadi, untuk mencari volume gabungannya, kamu hanya perlu menghitung volume masing-masing bangun lalu menjumlahkannya. 


Volume gabungan = Volume I + Volume II + Volume III + ...


untuk menghitung luas permukaan bangun ruang gabungan dapat dihitung dengan rumus berikut :

Luas Permukaan Gabungan = 

Luas permukaan I + Luas permukaan II - (2 x luas bidang himpit)


untuk melanjutkan ke soal dan pembahasan selengkapnya klik dibawah ini:

Volume dan Luas Permukaan Bangun Ruang Gabungan (Materi SD)


Tag:


soal luas permukaan bangun ruang gabungan kelas 6

hitunglah luas permukaan bangun 3

luas permukaan bangun ruang kubus

volume bangun gabungan kubus dan balok di samping adalah

rumus luas permukaan bangun ruang gabungan balok dan kubus

soal bangun ruang gabungan

soal hots luas permukaan bangun ruang

luas permukaan bangun ruang gabungan di atas adalah

on Saturday, November 7, 2020 | , , | A comment?

Pelajaran Matematika Transformasi Geometri

Pelajaran Bimbel Jakarta Timur

 Transformasi artinya mengubah. Oleh karena itu, transformasi geometris berarti membuat beberapa perubahan dalam bentuk geometris tertentu.


Menghubungkan Konsep Geometris dan Aljabar

Transformasi adalah istilah umum untuk empat cara khusus untuk memanipulasi bentuk dan/atau posisi titik, garis, atau bangun geometris. Bentuk asli dari objek disebut Pra-Gambar dan bentuk akhir dan posisi objek adalah Gambar di bawah transformasi.

Ada empat jenis transformasi dalam Matematika:

Cerminan

Dalam refleksi, setiap titik berjarak sama dari garis tetap. Garis ini kadang-kadang disebut garis simetri. Dalam refleksi, Gambar berukuran sama dengan Pra-Gambar.

 Rotasi

"Rotasi" berarti berputar di sekitar pusat.

Jarak dari pusat ke setiap titik pada bentuk tetap sama. Setiap titik membuat lingkaran di sekitar pusat. Dalam rotasi, Pra-Gambar dan Gambar berukuran sama.

Translasi

"Translasi" secara sederhana berarti bergerak. Dalam translasi, setiap titik pada bangun harus bergerak dengan jarak dan arah yang sama. Dalam terjemahan, ukuran Gambar adalah ukuran yang sama dengan Pra-Gambar.

Dilatasi

"Dilatasi" berarti mengubah ukuran. Namun, ketika Anda mengubah ukuran bentuk, bentuknya menjadi lebih besar atau lebih kecil, namun tetap terlihat serupa. Artinya, semua sudut adalah sama dan sisi-sisinya sebanding. Dalam dilatasi, ukuran Gambar dan Pra-Gambar berbeda. Dilatasi juga disebut kompresi, pembesaran atau kontraksi.

Transformasi yang mempertahankan kongruensi disebut isometri. Dengan kata lain, transformasi di mana Gambar dan Pra-Gambar memiliki panjang sisi dan ukuran sudut yang sama. Translasi, refleksi, dan rotasi adalah isometri. Translasi dianggap sebagai "isometri langsung" karena tidak hanya mempertahankan keselarasan, tetapi juga, tidak seperti refleksi dan rotasi, mempertahankan orientasinya.

Di sisi lain, dilatasi bukan isometri karena Bayangannya tidak kongruen dengan Pra Bayangannya.

Komposisi transformasi berarti bahwa dua atau lebih transformasi akan dilakukan pada satu objek. Misalnya, kita bisa melakukan refleksi dan kemudian terjemahan pada titik yang sama.

Koneksi ke Fungsi Aljabar

Transformasi fungsi mengambil apa pun yang merupakan fungsi dasar f(x) dan kemudian "mengubah" fungsi tersebut dengan cara tertentu. Transformasi fungsi dapat dilakukan dengan memanipulasi fungsi dengan operasi (penambahan, pengurangan, perkalian atau pembagian). Dengan mengubah fungsi, grafik fungsi dapat dipindahkan atau "diubah".

 Mari kita gunakan fungsinya, f(x) = x^3

Jika kita mengubah f(x) dengan menambahkan nilai konstan, kita mengubah grafik. Perhatikan grafik g(x) = x^3+ 3. Grafik g(x) “diterjemahkan” naik 3 satuan dari f(x). Karena merupakan translasi, maka bentuk dan ukuran graf g(x) sama dengan f(x). Terjemahan aljabar mengikuti aturan yang sama dengan terjemahan geometris.


Berikut ini adalah tentang Soal Transformasi Geometri berikut jawaban dan pembahasannya agar mudah dipelajari

Soal Transformasi Geometri Kelas 9



Tag:


transformasi geometri kelas 11

soal transformasi geometri kelas 11

contoh soal transformasi geometri

materi transformasi geometri

transformasi geometri yang merubah ukuran adalah

transformasi geometri kelas 12

rumus transformasi geometri

transformasi geometri kelas 9

on Sunday, November 1, 2020 | , , | A comment?

Pelajaran IPA Fisika Gerak Parabola

Pelajaran Bimbel Jakarta Timur

Gerak parabola yaitu gerak yang lintasannya bentuk parabola. Gerak parabola ini perpaduan gerak lurus beraturan (GLB) pada sumbu horisontal dan gerak lurus berubah beraturan (GLBB) pada sumbu vertikal. Percepatan yang berpengaruh pada sumbu vertikal adalah percepatan gravitasi.

Gerak Parabola adalah gerak suatu benda yang dilempar atau diproyeksikan ke udara, hanya dikenai percepatan gravitasi. Objek itu disebut Parabola, dan lintasannya disebut lintasannya. Gerak benda jatuh, seperti yang tercakup dalam Dasar-dasar Pemecahan Masalah untuk Kinematika Satu Dimensi, adalah jenis gerak Parabola satu dimensi sederhana di mana tidak ada gerakan horizontal. Pada bagian ini, kita mempertimbangkan gerakan Parabola dua dimensi, seperti sepak bola atau benda lain yang hambatan udaranya dapat diabaikan.

Fakta paling penting untuk diingat di sini adalah bahwa gerakan sepanjang sumbu tegak lurus adalah independen dan dengan demikian dapat dianalisis secara terpisah. Dimana gerakan vertikal dan horizontal terlihat independen. Kunci untuk menganalisis gerakan Parabola dua dimensi adalah dengan memecahnya menjadi dua gerakan, satu di sepanjang sumbu horizontal dan yang lainnya di sepanjang vertikal. (Pilihan sumbu ini adalah yang paling masuk akal, karena percepatan gravitasi adalah vertikal—sehingga, tidak akan ada percepatan sepanjang sumbu horizontal ketika hambatan udara diabaikan.) Seperti biasa, kita menyebut sumbu horizontal sebagai sumbu x dan sumbu vertikal sumbu y. Gambar 1 mengilustrasikan notasi perpindahan, di mana s didefinisikan sebagai perpindahan total dan x dan y masing-masing adalah komponennya sepanjang sumbu horizontal dan vertikal. Besaran vektor-vektor tersebut adalah s, x, dan y.

Gerak Parabola adalah suatu bentuk gerak yang dialami oleh suatu benda atau partikel (Proyektil) yang diproyeksikan di dekat permukaan bumi dan bergerak sepanjang jalur melengkung di bawah aksi gravitasi saja (khususnya, efek hambatan udara bersifat pasif dan diasumsikan diabaikan). Jalur melengkung ini ditunjukkan oleh Galileo sebagai parabola, tetapi mungkin juga berupa garis dalam kasus khusus ketika dilemparkan langsung ke atas. Studi tentang gerakan semacam itu disebut balistik, dan lintasan seperti itu adalah lintasan balistik. Satu-satunya kekuatan signifikansi matematis yang secara aktif diberikan pada objek adalah gravitasi, yang bertindak ke bawah, sehingga memberikan objek percepatan ke bawah menuju pusat massa bumi. Karena kelembaman benda, tidak diperlukan gaya luar untuk mempertahankan komponen kecepatan horizontal dari gerak benda. Mempertimbangkan kekuatan lain, seperti hambatan aerodinamis atau propulsi internal (seperti dalam roket), memerlukan analisis tambahan. Rudal balistik adalah peluru kendali yang hanya dipandu selama fase penerbangan bertenaga awal yang relatif singkat, dan arah yang tersisa diatur oleh hukum mekanika klasik.

Balistik (Yunani: βάλλειν, diromanisasi: ba'llein, lit. 'melempar') adalah ilmu tentang dinamika yang berhubungan dengan penerbangan, perilaku dan efek Parabola, terutama peluru, bom terarah, roket, atau sejenisnya; ilmu atau seni merancang dan mempercepat Parabola untuk mencapai kinerja yang diinginkan.

Lintasan Parabola dengan hambatan udara dan kecepatan awal yang bervariasi

Persamaan dasar balistik mengabaikan hampir setiap faktor kecuali kecepatan awal dan percepatan gravitasi konstan yang diasumsikan. Solusi praktis dari masalah balistik sering memerlukan pertimbangan hambatan udara, angin silang, gerakan target, berbagai percepatan gravitasi, dan dalam masalah seperti peluncuran roket dari satu titik di Bumi ke titik lain, rotasi Bumi. Solusi matematika terperinci dari masalah praktis biasanya tidak memiliki solusi bentuk tertutup, dan oleh karena itu memerlukan metode numerik untuk mengatasinya.

Apa itu Proyektil?

Proyektil adalah benda apa pun yang dilemparkan ke ruang angkasa di mana satu-satunya gaya yang bekerja adalah gravitasi. Gaya utama yang bekerja pada Proyektil adalah gravitasi. Ini tidak berarti bahwa kekuatan lain tidak bekerja padanya, hanya saja efeknya minimal dibandingkan dengan gravitasi. Jalur yang diikuti oleh Proyektil dikenal sebagai lintasan. Bola bisbol yang dipukul atau dilempar adalah contoh Proyektil.

Apa itu Gerak Parabola?

Ketika sebuah partikel dilemparkan miring di dekat permukaan bumi, ia bergerak sepanjang jalur melengkung di bawah percepatan konstan yang diarahkan ke pusat bumi (kita asumsikan bahwa partikel itu tetap dekat dengan permukaan bumi). Lintasan partikel semacam itu disebut Parabola dan geraknya disebut gerak parabola.

Contoh Gerak Parabola

  • Sebuah gelas tidak sengaja jatuh dari meja.
  • Sebuah telepon dilemparkan ke tempat tidur.
  • Sebuah rudal dikerahkan dari pesawat militer dari penerbangan tingkat.
  • Lembing yang dilempar oleh seorang atlet.

Asumsi Gerak Parabola

  1. Tidak ada gesekan karena udara.
  2. Efek karena kelengkungan bumi dapat diabaikan.
  3. Efek akibat rotasi bumi dapat diabaikan.
  4. Seluruh lintasan berada di dekat permukaan bumi.

Kecepatan dan Percepatan dalam Gerak Parabola

Kecepatan parabola berubah. secara tangensial terhadap lintasan. Saat lintasan melengkung, kecepatan juga berubah arah.

Prinsip Kemandirian Fisik Gerak

  • Gerak Parabola merupakan gerak dua dimensi. Jadi, dapat dibahas dalam dua bagian: gerak horizontal dan gerak vertikal. Kedua gerakan ini terjadi secara independen satu sama lain. Ini disebut prinsip kemandirian fisik gerakan.
  • Kecepatan parabola dapat dibagi menjadi dua komponen yang saling tegak lurus: komponen horizontal dan komponen vertikal.
  • Percepatan mengubah kecepatan. Jika percepatan dalam arah tertentu adalah nol, maka kecepatan dalam arah itu tetap sama. Jadi, dalam gerakan parabola, komponen kecepatan horizontal tetap tidak berubah selama penerbangan. Gerak mendatar merupakan gerak beraturan.
  • Gaya gravitasi terus menerus mempengaruhi komponen vertikal, sehingga gerak vertikal merupakan gerak dipercepat beraturan.
  • Proyektil dapat dilempar dengan berbagai cara: di tanah datar, dari menara tinggi ke tanah, dari pesawat terbang, dll. Bagian berikut membahas beberapa kasus secara rinci.


Gerakan Parabola

Proyektil adalah benda apa pun yang dilemparkan ke luar angkasa dengan hanya gravitasi yang bekerja padanya. Gaya utama yang bekerja pada proyektil adalah gravitasi. Ini bukan untuk mengatakan bahwa kekuatan lain tidak bertindak di atasnya; sebaliknya, dampaknya minimal jika dibandingkan dengan gravitasi. Lintasan adalah lintasan yang ditempuh secara parabola.

Ketika sebuah partikel dilemparkan secara miring di dekat permukaan bumi, ia mengikuti jalur melengkung dengan percepatan konstan menuju pusat bumi (kita asumsikan bahwa partikel itu tetap dekat dengan permukaan bumi). Lintasan partikel semacam itu dikenal sebagai lintasan parabola, dan gerakannya dikenal sebagai gerak parabola.

Gerak parabola juga adalah salah satu jenis gerak yang paling umum di pesawat. Satu-satunya percepatan yang bekerja dalam gerak peluru adalah percepatan vertikal yang disebabkan oleh gravitasi (g). Akibatnya, persamaan gerak dapat digunakan secara terpisah pada sumbu X dan Y untuk menentukan parameter yang tidak diketahui.

Gerak parabola dalam dua dimensi dibagi menjadi dua bagian:

  • Gerak horizontal dalam arah x tanpa percepatan dan
  • Gerak vertikal dalam arah y dengan percepatan konstan karena gravitasi.

Persamaan gerak parabola adalah y = ax + bx^2.

Untuk menyederhanakan perhitungan, gerakan parabola biasanya dihitung tanpa memperhitungkan hambatan udara.

Sebelum memahami turunan hubungan gerak parabola, mari kita kenalkan dulu beberapa istilah yang digunakan di dalamnya, yaitu:

  • Sudut Proyeksi: Sudut di mana tubuh diproyeksikan terhadap horizontal disebut sebagai sudut proyeksi.
  • Kecepatan Proyeksi: Kecepatan dengan mana tubuh dilemparkan disebut sebagai kecepatan proyeksi.
  • Titik Proyeksi: Titik proyeksi adalah titik dari mana tubuh diproyeksikan di udara.
  • Lintasan Parabola: Jalur yang diambil oleh proyektil di udara disebut sebagai lintasan parabola.
  • Jangkauan Horizontal: Jarak horizontal yang ditempuh oleh tubuh yang melakukan gerakan parabola disebut sebagai jangkauan parabola.

Berikut ini kami berikan beberapa contoh soal beserta pembahasannya untuk membantu siswa memahami materi gerak parabola.

Soal Gerak Parabola


Tag:

gerak parabola

contoh gerak parabola

rangkuman gerak parabola

materi gerak parabola pdf

contoh soal gerak parabola

analisis vektor pada gerak parabola

rumus gerak parabola

tujuan gerak parabola

contoh soal gerak parabola beserta jawabannya 

contoh soal gerak parabola dalam kehidupan sehari hari

soal gerak parabola pilihan ganda

soal dan pembahasan gerak parabola pdf

soal gerak parabola doc

contoh soal gerak parabola kelas 10 beserta jawabannya

contoh soal gerak parabola

contoh soal gerak parabola mencari sudut elevasi

on Sunday, October 25, 2020 | , , , | A comment?

Pelajaran Matematika Bentuk Aljabar

Pelajaran Bimbel Jakarta Timur

Kata aljabar berasal dari bahasa Arab: الجبر‎, diromanisasi: al-jabr,dari judul buku awal abad ke-9 Ilm al-jabr wa l-muqābala, "The Science of Restoring and Balancing" oleh ahli matematika dan astronom Persia al-Khwarizmi. Dalam karyanya, istilah al-jabr mengacu pada operasi memindahkan istilah dari satu sisi persamaan ke sisi lain, المقابلة al-muqābala "menyeimbangkan" mengacu pada penambahan istilah yang sama ke kedua sisi. Dipendekkan menjadi hanya aljabar atau aljabar dalam bahasa Latin, kata itu akhirnya memasuki bahasa Inggris selama abad ke-15, dari bahasa Spanyol, Italia, atau Latin Abad Pertengahan. Ini awalnya mengacu pada prosedur bedah pengaturan tulang yang patah atau terkilir. Makna matematis pertama kali dicatat (dalam bahasa Inggris) pada abad ke-16.

Ekspresi aljabar adalah ekspresi yang dibangun dari konstanta bilangan bulat, variabel, dan operasi aljabar (penambahan, pengurangan, perkalian, pembagian dan eksponen dengan eksponen yang merupakan bilangan rasional). Misalnya, 3x^2 2xy + c adalah ekspresi aljabar.

Sebaliknya, bilangan transendental seperti dan e bukan aljabar, karena tidak diturunkan dari konstanta bilangan bulat dan operasi aljabar. Biasanya, dibangun sebagai hubungan geometris, dan definisi e membutuhkan jumlah operasi aljabar yang tak terbatas.

Ekspresi rasional adalah ekspresi yang dapat ditulis ulang menjadi pecahan rasional dengan menggunakan sifat-sifat operasi aritmatika (sifat komutatif dan sifat asosiatif penjumlahan dan perkalian, sifat distributif dan aturan operasi pada pecahan). Dengan kata lain, ekspresi rasional adalah ekspresi yang dapat dibangun dari variabel dan konstanta dengan hanya menggunakan empat operasi aritmatika.

Polinomial homogen (kata lain dari bentuk aljabar), kadang-kadang disebut quantic dalam teks-teks yang lebih tua, adalah polinomial yang semua suku bukan nol memiliki derajat yang sama..

Bentuk aljabar, atau bentuk sederhana, adalah fungsi yang didefinisikan oleh polinomial homogen. Bentuk biner adalah bentuk dalam dua variabel. Bentuk juga merupakan fungsi yang didefinisikan pada ruang vektor, yang dapat dinyatakan sebagai fungsi homogen dari koordinat atas basis apa pun.

Sebuah polinomial derajat 0 selalu homogen; itu hanyalah elemen medan atau cincin koefisien, biasanya disebut konstanta atau skalar. Bentuk derajat 1 adalah bentuk linier.Bentuk derajat 2 adalah bentuk kuadrat. Dalam geometri, jarak Euclidean adalah akar kuadrat dari bentuk kuadrat.

Polinomial homogen ada di mana-mana dalam matematika dan fisika. Mereka memainkan peran mendasar dalam geometri aljabar, sebagai berbagai aljabar proyektif didefinisikan sebagai himpunan nol umum dari satu set polinomial homogen.

Polinomial homogen adalah polinomial multivariat (yaitu polinomial lebih dari satu variabel), dengan semua suku derajat yang sama. Cara lain untuk menyatakan ini: polinomial homogen derajat d jika merupakan kombinasi linier dari monomial derajat d.

Polinomial homogen umum kadang-kadang disebut bentuk aljabar:

Derajat 1 adalah bentuk linier,

Derajat 2 adalah bentuk kuadrat,

Derajat 3 adalah bentuk kubik.

Polinomial homogen berderajat k juga merupakan fungsi homogen berderajat k. Namun, kebalikannya tidak benar: ada banyak fungsi homogen yang bukan polinomial.


Untuk pemahaman selanjutnya, mari kita bedah bersama-sama soal dan pembahasannya

Soal Bentuk Aljabar Kelas 7


Tag:

contoh soal bentuk aljabar

bentuk aljabar kelas 7

bentuk aljabar

penjumlahan bentuk aljabar

perkalian bentuk aljabar

rumus bentuk aljabar

operasi penjumlahan dan pengurangan bentuk aljabar dapat disederhanakan apabila

contoh bentuk aljabar 3 suku



on Wednesday, October 21, 2020 | , , | A comment?

Pelajaran Matematika Grafik Fungsi Kuadrat

Bimbel Jakarta Timur | Bimbel Diah Jakarta Timur | WA : +6285875969990

Fungsi kuadrat yaitu fungsi yang persamaannya memiliki variabel dengan pangkat tertingginya 2. Dalam materi fungsi kuadrat kita pelajari ciri-ciri grafik fungsi kuadrat,sumbu simetri, nilai optimum (maksimum atau minimum) serta titik potongnyaterhadap sumbu pada koordinat kartesius. 


Persamaan umumfungsi kuadrat adalah :

F(x)=ax2 + bx + c atau y=ax2 + bx + c

Variabel x padafungsi kuadrat adalah variabel bebas sedangkan y sebagai variabel terikat. adan b sebagai koefisien dimana a ≠ 0  danc sebagai konstanta.

Grafik fungsi kuadrat adalah grafik berbentuk kurva parabola yangdihasilkan dari persamaan kuadrat yang digambarkan pada bidang kartesius.

Fungsi kuadrat

Fungsi kuadrat digunakan di berbagai bidang teknik dan sains untuk mendapatkan nilai parameter yang berbeda. Secara grafis, mereka diwakili oleh parabola. Bergantung pada koefisien derajat tertinggi, arah kurva ditentukan. Kata “Quadratic” berasal dari kata “Quad” yang berarti persegi. Dengan kata lain, fungsi kuadrat adalah "fungsi polinomial derajat 2." Ada banyak skenario di mana fungsi kuadrat digunakan. Tahukah Anda bahwa ketika sebuah roket diluncurkan, jalurnya dijelaskan oleh solusi fungsi kuadrat?

Fungsi kuadrat adalah fungsi polinomial dengan satu atau lebih variabel yang eksponen tertinggi variabelnya adalah dua. Karena suku derajat tertinggi dalam fungsi kuadrat adalah derajat kedua, maka disebut juga polinomial derajat 2. Sebuah fungsi kuadrat memiliki minimal satu suku derajat kedua.

Pada artikel ini, kita akan menjelajahi dunia fungsi kuadrat dalam matematika. Anda akan belajar tentang grafik fungsi kuadrat, rumus fungsi kuadrat, dan fakta menarik lainnya seputar topik ini.

Grafik fungsi kuadrat adalah parabola, dan bagian-bagiannya memberikan informasi yang berharga tentang fungsi tersebut.

Fitur Parabola

Parabola memiliki beberapa fitur yang dapat dikenali yang mencirikan bentuk dan penempatannya pada bidang Cartesian.

Puncak (vertex)

Salah satu fitur penting dari parabola adalah memiliki titik ekstrem, yang disebut titik. Jika parabola terbuka, simpul mewakili titik terendah pada grafik, atau nilai minimum fungsi kuadrat. Jika parabola terbuka ke bawah, simpul mewakili titik tertinggi pada grafik, atau nilai maksimum. Dalam kedua kasus, simpul adalah titik balik pada grafik.

Sumbu Simetri

Parabola juga memiliki sumbu simetri yang sejajar dengan sumbu y. Sumbu simetri adalah garis vertikal yang ditarik melalui titik sudut.

Perpotongan y

Perpotongan y adalah titik di mana parabola memotong sumbu y. Tidak boleh ada lebih dari satu titik seperti itu, untuk grafik fungsi kuadrat. Jika ada, kurva tidak akan menjadi fungsi, karena akan ada dua nilai y untuk satu nilai x, pada nol.

Perpotongan x

Perpotongan x adalah titik potong parabola terhadap sumbu x. Jika ada, perpotongan x mewakili nol, atau akar, dari fungsi kuadrat, nilai x di mana y=0. Mungkin ada nol, satu, atau dua perpotongan x. Jumlah perpotongan x bervariasi tergantung pada lokasi grafik.

Persamaan polinomial dengan pangkat tertinggi dari variabelnya adalah 2 disebut fungsi kuadrat. Kami tiba di grafik berikut ketika kami menggambar fungsi kuadrat seperti y = x^2:

Kita dapat dengan mudah melihat bahwa kita tidak berhadapan dengan garis lurus tetapi parabola, sehingga disebut sebagai fungsi non-linier. Ketika seseorang memiliki koefisien positif sebelum x2 kita memiliki nilai minimum, dan jika kita memiliki koefisien negatif, kita memiliki nilai maksimum sebagai gantinya. Lihat grafik di bawah ini di mana y = -x^2:

Aturan praktis mengingatkan kita bahwa ketika kita memiliki simbol positif sebelum x^2 kita mendapatkan ekspresi bahagia pada grafik :) dan simbol negatif membuat ekspresi sedih :( 


Keterangan Pelajaran Selanjutnya dalam bentuk grafik dan rumus :

Grafik Fungsi Kuadrat


Tag:

contoh soal grafik fungsi kuadrat

contoh soal fungsi kuadrat dan grafik parabola

grafik fungsi kuadrat f

contoh soal grafik fungsi kuadrat

grafik fungsi kuadrat kelas 9

contoh soal grafik fungsi kuadrat kelas 9

sifat grafik fungsi kuadrat

kesimpulan grafik fungsi kuadrat


on Saturday, October 17, 2020 | , , | A comment?