Pelajaran Matematika Fungsi Trigonometri

 

Fungsi trigonometri adalah enam fungsi dasar yang memiliki nilai input domain sebagai sudut segitiga siku-siku, dan jawaban numerik sebagai rentang.

Fungsi trigonometri f(x) = sinθ memiliki domain, yaitu sudut yang diberikan dalam derajat atau radian, dan rentang [-1, 1]. Demikian pula kami memiliki domain dan rentang dari semua fungsi lainnya. Fungsi trigonometri banyak digunakan dalam kalkulus, geometri, aljabar.

Ada enam fungsi trigonometri dasar yang digunakan dalam Trigonometri. Fungsi-fungsi ini adalah rasio trigonometri. Enam fungsi dasar trigonometri adalah sinus, cosinus, secan, co-secant, tangen, dan co-tangen. Fungsi dan identitas trigonometri adalah perbandingan sisi-sisi segitiga siku-siku. Sisi segitiga siku-siku adalah sisi tegak lurus, sisi miring, dan alas, yang digunakan untuk menghitung nilai sinus, cosinus, tangen, secan, cosecan, dan kotangen menggunakan rumus trigonometri.

1. Rumus Dasar
  • sin θ= Tegak Lurus/Hipotenusa (sisi terpanjang dari segitiga siku-siku, sisi yang berlawanan dengan sudut kanan)
  • cos θ= Basis/Hipotenusa
  • tan θ= Tegak Lurus/Dasar
  • detik θ= Sisi miring/Dasar
  • cosec θ= miring/tegak lurus
  • cot θ= Alas/Tegak Lurus
Nilai Pokok Fungsi Trigonometri
Fungsi trigonometri memiliki domain , yang dalam derajat atau radian. Beberapa nilai utama untuk fungsi trigonometri yang berbeda disajikan di bawah ini dalam sebuah tabel. Nilai utama ini juga disebut sebagai nilai standar dan sering digunakan dalam perhitungan. Nilai-nilai utama fungsi trigonometri diturunkan dari lingkaran satuan. Nilai-nilai ini juga memenuhi semua rumus trigonometri.

Fungsi Trigonometri dalam Empat Kuadran
Sudut adalah sudut lancip (θ < 90) dan diukur dengan mengacu pada sumbu x positif, dalam arah berlawanan arah jarum jam. Selanjutnya, rasio trigonometri ini memiliki tanda numerik yang berbeda (+ atau -) di kuadran yang berbeda, yang didasarkan pada sumbu positif atau negatif dari kuadran. Rasio trigonometri Sinθ, Cosecθ positif di kuadran I dan II, dan negatif di kuadran III dan IV. Semua fungsi trigonometri memiliki jangkauan positif di kuadran pertama. Fungsi trigonometri Tanθ, Cotθ positif hanya di Kuadran I dan III, dan rasio trigonometri Cosθ, Secθ masing-masing positif hanya di kuadran I dan IV.

Fungsi trigonometri memiliki nilai , (90° - ) di kuadran pertama. Identitas kofungsi memberikan keterkaitan antara fungsi trigonometri komplementer yang berbeda untuk sudut (90° - θ).
  • sin(90°−θ) = cos θ
  • cos(90°−θ) = sin θ
  • tan(90°−θ) = cot θ
  • cot(90°−θ) = tan θ
  • detik(90°−θ) = cosec θ
  • cosec(90°−θ) = sec θ
Nilai domain untuk fungsi trigonometri yang berbeda pada kuadran kedua adalah (π/2 + θ, π - θ), pada kuadran ketiga adalah (π + θ, 3π/2 - θ), dan pada kuadran keempat adalah (3π/2 + θ, 2π - θ). Untuk π/2, 3π/2 nilai trigonometri berubah sebagai rasio komplementernya seperti Sinθ⇔Cosθ, Tanθ⇔Cotθ, Secθ⇔Cosecθ. Untuk , 2π nilai trigonometri tetap sama. Perubahan rasio trigonometri pada kuadran dan sudut yang berbeda.

Rumus Fungsi Trigonometri
Rumus fungsi trigonometri secara luas dibagi menjadi identitas timbal balik, rumus Pythagoras, jumlah dan perbedaan identitas, rumus untuk sudut kelipatan dan sub-kelipatan, jumlah dan produk identitas. Semua rumus ini dapat dengan mudah diturunkan menggunakan rasio sisi segitiga siku-siku. Rumus yang lebih tinggi dapat diturunkan dengan menggunakan rumus fungsi trigonometri dasar. Identitas timbal balik sering digunakan untuk menyederhanakan masalah trigonometri.

untuk menyempurnakan teori-teori di artikel ini dapat diklik link-link ini :


Soal-soal lainnya


Trigonometri berkembang dari kebutuhan untuk menghitung sudut dan jarak di bidang-bidang seperti astronomi, pembuatan peta, survei, dan penemuan jangkauan artileri. Masalah yang melibatkan sudut dan jarak dalam satu bidang dibahas dalam trigonometri bidang. Aplikasi untuk masalah serupa di lebih dari satu bidang ruang tiga dimensi dipertimbangkan dalam trigonometri bola.

Sejarah trigonometri
trigonometri klasik
Kata trigonometri berasal dari kata Yunani trigonon ("segitiga") dan metron ("untuk mengukur"). Sampai sekitar abad ke-16, trigonometri terutama berkaitan dengan penghitungan nilai numerik dari bagian segitiga yang hilang (atau bentuk apa pun yang dapat dibedah menjadi segitiga) ketika nilai bagian lain diberikan. Misalnya, jika panjang dua sisi segitiga dan ukuran sudut tertutup diketahui, sisi ketiga dan dua sudut yang tersisa dapat dihitung. Perhitungan tersebut membedakan trigonometri dari geometri, yang terutama menyelidiki hubungan kualitatif. Tentu saja, perbedaan ini tidak selalu mutlak: teorema Pythagoras, misalnya, adalah pernyataan tentang panjang ketiga sisi dalam segitiga siku-siku dan dengan demikian bersifat kuantitatif. Namun, dalam bentuk aslinya, trigonometri pada umumnya merupakan turunan dari geometri; baru pada abad ke-16 keduanya menjadi cabang matematika yang terpisah.

Mesir Kuno dan dunia Mediterania
Beberapa peradaban kuno—khususnya, Mesir, Babilonia, Hindu, dan Cina—memiliki pengetahuan yang cukup besar tentang geometri praktis, termasuk beberapa konsep yang merupakan awal dari trigonometri. Papirus Rhind, koleksi Mesir dari 84 masalah dalam aritmatika, aljabar, dan geometri yang berasal dari sekitar 1800 SM, berisi lima masalah yang berhubungan dengan seked. Analisis teks yang cermat, dengan gambar-gambar yang menyertainya, mengungkapkan bahwa kata ini berarti kemiringan lereng—pengetahuan penting untuk proyek konstruksi besar seperti piramida. Misalnya, soal 56 menanyakan: “Jika sebuah piramida tingginya 250 hasta dan sisi alasnya panjangnya 360 hasta, berapakah sekednya?” Solusinya diberikan sebagai 51/25 telapak tangan per hasta, dan, karena satu hasta sama dengan 7 telapak tangan, pecahan ini setara dengan rasio murni 18/25. Ini sebenarnya adalah rasio "run-to-rise" dari piramida yang dimaksud — pada dasarnya, kotangen dari sudut antara alas dan wajah. Ini menunjukkan bahwa orang Mesir setidaknya memiliki beberapa pengetahuan tentang hubungan numerik dalam segitiga, semacam "proto-trigonometri."

Sebenarnya ada lebih banyak fungsi trigonometri yang tidak pernah disebutkan lagi, berikut adalah definisi dari semua "fungsi trigonometri yang hilang"
  • Versin: versin(θ)=1-cos(θ)
  • Vercosin: vercosin(θ)=1+cos(θ)
  • Coversin: coversin(θ)=1-sin(θ)
  • Covercosinus: covercosinus(θ)=1+sin(θ)
  • Haversin: haversin(θ)=versi(θ)/2
  • Havercosin: havercosin(θ)=vercosin(θ)/2
  • Hacoversin: hacoversin(θ)=coversin(θ)/2
  • Hacovercosin: hacovercosin(θ)=covercosin(θ)/2
  • Exsecant: exsec(θ)=sec(θ)-1
  • Excosecant: excsc(θ)=csc(θ)-1

 Tag.

materi fungsi trigonometri
fungsi trigonometri kelas 11
tabel grafik fungsi trigonometri
fungsi trigonometri kelas 12
grafik fungsi trigonometri
jenis-jenis fungsi trigonometri
contoh soal fungsi trigonometri
fungsi trigonometri kelas 10
contoh soal fungsi trigonometri dan grafiknya
soal fungsi trigonometri kelas 11
soal fungsi trigonometri kelas 10
soal fungsi trigonometri kelas 12
contoh soal fungsi trigonometri
contoh soal fungsi trigonometri dan pembahasannya kelas 10
contoh soal dan pembahasan fungsi trigonometri kelas 11
soal grafik fungsi trigonometri dan jawaban 




on Monday, July 5, 2021 | , , | A comment?

Pelajaran Matematika Notasi Sigma

 Notasi Sigma adalah metode penjumlahan bilangan-bilangan berurut yang mengikuti pola tertentu dan dilambangkan dalam simbol Σ.

Berikut lebih jauh lagi adalah beberapa soal latihan tentang notasi sigma dengan pembahasannya.


Dalam matematika, penjumlahan adalah penambahan barisan bilangan apapun, yang disebut penjumlahan atau penjumlahan; hasilnya adalah jumlah atau totalnya. Selain angka, jenis nilai lain dapat dijumlahkan juga: fungsi, vektor, matriks, polinomial, dan, secara umum, elemen dari semua jenis objek matematika di mana operasi yang dilambangkan "+" didefinisikan.

Penjumlahan barisan tak hingga disebut deret. Mereka melibatkan konsep limit, dan tidak dibahas dalam artikel ini.

Penjumlahan barisan eksplisit dilambangkan sebagai suksesi penambahan. Misalnya, penjumlahan [1, 2, 4, 2] dilambangkan 1 + 2 + 4 + 2, dan menghasilkan 9, yaitu 1 + 2 + 4 + 2 = 9. Karena penjumlahan bersifat asosiatif dan komutatif, ada tidak perlu tanda kurung, dan hasilnya sama terlepas dari urutan pemanggilan. Penjumlahan barisan hanya satu elemen menghasilkan elemen ini sendiri. Penjumlahan barisan kosong (urutan tanpa elemen), dengan konvensi, menghasilkan 0.

Sigma adalah huruf besar kedelapan belas dari alfabet Yunani kuno. Ini direpresentasikan sebagai (Σ), juga dikenal sebagai notasi sigma. Sebagai huruf besar Yunani, notasi sigma digunakan untuk mewakili jumlah suku yang tidak terbatas.

Dalam Matematika Umum, huruf kecil (), umumnya digunakan untuk mewakili sudut yang tidak diketahui, serta, itu adalah awalan yang digunakan dalam situasi yang berbeda untuk menyatakan bahwa suatu istilah dirujuk dalam beberapa cara ke serikat pekerja yang dapat dihitung. Misalnya, aljabar sigma adalah sekelompok himpunan tertutup di bawah serikat yang dapat dihitung.

Contoh umum lain dari sigma (Σ) adalah bahwa ia digunakan untuk mewakili standar deviasi populasi atau distribusi probabilitas, di mana mu atau mewakili rata-rata populasi).

Definisi Sigma

Sigma adalah huruf ke-18 dari Alfabet Yunani. Dalam sistem bilangan Yunani, sigma memiliki nilai 200. Dalam Matematika Umum, huruf besar (Σ) digunakan sebagai operator penjumlahan, sedangkan huruf kecil () digunakan untuk mewakili sudut yang tidak diketahui.

Apa Arti Simbol Sigma?

Simbol sigma (Σ) digunakan untuk menyatakan jumlah suku tak hingga yang mengikuti suatu pola.

Apa itu Fungsi Sigma?

Misalkan x sembarang bilangan bulat sehingga x > 1.

Fungsi sigma bilangan bulat positif x didefinisikan sebagai jumlah dari pembagi positif x. Ini biasanya dilambangkan dengan huruf Yunani sigma (x).

Archimedes sangat berkonsentrasi dalam menghitung luas berbagai bentuk—dengan kata lain, jumlah ruang yang dilingkupi oleh bentuk itu. Dia menggunakan proses yang kemudian dikenal sebagai metode yang menggunakan bentuk yang lebih kecil dan lebih kecil, area yang dapat dihitung secara tepat, untuk mengisi wilayah yang tidak beraturan dan dengan demikian memperoleh perkiraan yang lebih dekat dan lebih dekat ke total area. Dalam proses ini, area yang dibatasi oleh kurva diisi dengan persegi panjang, segitiga, dan bentuk dengan rumus luas yang tepat. Daerah-daerah ini kemudian dijumlahkan untuk mendekati luas daerah lengkung.

Pada bagian ini, kami mengembangkan teknik untuk mendekati area antara kurva, yang didefinisikan oleh fungsi f(x), dan sumbu x pada interval tertutup [a,b]. Seperti Archimedes, pertama-tama kita memperkirakan area di bawah kurva menggunakan bentuk area yang diketahui (yaitu, persegi panjang). Dengan menggunakan persegi panjang yang lebih kecil dan lebih kecil, kami mendapatkan pendekatan yang lebih dekat dan lebih dekat ke area tersebut. Mengambil batas memungkinkan kita untuk menghitung area yang tepat di bawah kurva.



on Sunday, June 27, 2021 | , , | A comment?

Pelajaran Matematika Logika Matematika

Logika Matematika adalah metode berpikir untuk memisahkan penalaran yang benar dan penalaran yang salah pada suatu pernyataan matematis. 

Selanjutnya dalam logika matematika dipelajari 4 macam kalimat majemuk yang dalam penyelesaiannya diperlukan tabel kebenaran seperti berikut:  

Tabel Kebenaran Logika Matematika
B = Benar, S = Salah

Untuk menyeimbangkan teori-teori berikutnya terdapat soal dan pembahasan mengenai Logika Matematika yang didalamnya terdapat gambar grafik berikut cara-caranya




Logika matematika adalah studi tentang logika dalam matematika. Subarea utama termasuk teori model, teori pembuktian, teori himpunan, dan teori rekursi. Penelitian dalam logika matematika biasanya membahas sifat-sifat matematika dari sistem logika formal seperti kekuatan ekspresif atau deduktifnya. Namun, itu juga dapat mencakup penggunaan logika untuk mengkarakterisasi penalaran matematika yang benar atau untuk membangun dasar matematika.

Sejak awal, logika matematika telah berkontribusi, dan telah dimotivasi oleh, studi tentang dasar matematika. Studi ini dimulai pada akhir abad ke-19 dengan pengembangan kerangka aksiomatik untuk geometri, aritmatika, dan analisis. Pada awal abad ke-20 itu dibentuk oleh program David Hilbert untuk membuktikan konsistensi teori dasar. Hasil dari Kurt Gödel, Gerhard Gentzen, dan lainnya memberikan resolusi parsial untuk program, dan mengklarifikasi masalah yang terlibat dalam membuktikan konsistensi. Pekerjaan dalam teori himpunan menunjukkan bahwa hampir semua matematika biasa dapat diformalkan dalam bentuk himpunan, meskipun ada beberapa teorema yang tidak dapat dibuktikan dalam sistem aksioma umum untuk teori himpunan. Pekerjaan kontemporer di dasar matematika sering berfokus pada penetapan bagian matematika mana yang dapat diformalkan dalam sistem formal tertentu (seperti dalam matematika terbalik) daripada mencoba menemukan teori di mana semua matematika dapat dikembangkan.

Logika berarti penalaran. Alasannya mungkin pendapat hukum atau konfirmasi matematis. Kami menerapkan logika tertentu dalam Matematika. Logika matematika dasar adalah negasi, konjungsi, dan disjungsi. Bentuk simbolis dari logika matematika adalah, '~' untuk negasi '^' untuk konjungsi dan 'v' untuk disjungsi. Pada artikel ini, kita akan membahas logika matematika dasar dengan tabel kebenaran dan contohnya.

Klasifikasi Logika Matematika
Logika matematika diklasifikasikan menjadi empat subbidang. Mereka:
  • Teori himpunan
  • Teori Model
  • Teori Rekursi
  • Teori Bukti

Operator Logika Matematika Dasar
Tiga operator logika yang digunakan dalam Matematika adalah:
  • Konjungsi (DAN)
  • Disjungsi (ATAU)
  • Negasi (TIDAK)
Mari kita bahas tiga jenis operator logika secara rinci.

Rumus Logika Matematika
Konjungsi (DAN)
Kita dapat menggabungkan dua pernyataan dengan operan “AND”. Ini juga dikenal sebagai konjungsi. Bentuk simbolisnya adalah "∧". Dalam operator ini, jika ada pernyataan yang salah, maka hasilnya akan salah. Jika kedua pernyataan benar, maka hasilnya akan benar. Ini memiliki dua atau lebih input tetapi hanya satu output.

Disjungsi (ATAU)
Kita dapat menggabungkan dua pernyataan dengan operan “ATAU”. Ini juga dikenal sebagai disjungsi. Bentuk simbolisnya adalah “∨”. Dalam operator ini, jika ada pernyataan yang benar, maka hasilnya benar. Jika kedua pernyataan salah, maka hasilnya akan salah. Ini memiliki dua atau lebih input tetapi hanya satu output.
Negasi (TIDAK)
Negasi adalah operator yang memberikan pernyataan kebalikan dari pernyataan yang diberikan. Ini juga dikenal sebagai NOT, dilambangkan dengan "∼". Ini adalah operasi yang memberikan hasil sebaliknya. Jika inputnya benar, maka outputnya akan salah. Jika input salah, maka output akan benar. Ini memiliki satu input dan satu output. Tabel kebenaran untuk NOT diberikan di bawah ini:

Logika matematika paling baik dipahami sebagai cabang logika atau matematika. Logika matematika sering dibagi menjadi subbidang teori model, teori pembuktian, teori himpunan dan teori rekursi. Penelitian dalam logika matematika telah berkontribusi, dan dimotivasi oleh, studi tentang dasar matematika, tetapi logika matematika juga mengandung bidang matematika murni yang tidak secara langsung berhubungan dengan pertanyaan dasar.

Salah satu tema pemersatu dalam logika matematika adalah studi tentang kekuatan ekspresif logika formal dan sistem pembuktian formal. Kekuatan ini diukur baik dari segi apa yang dapat dibuktikan oleh sistem formal ini dan dari segi apa yang dapat mereka definisikan. Dengan demikian dapat dikatakan bahwa "logika matematis telah menjadi studi umum tentang struktur logis teori-teori aksiomatik".

Nama-nama awal untuk logika matematika adalah logika simbolik (sebagai lawan dari logika filosofis) dan metamatematika. Istilah pertama masih digunakan (seperti dalam Asosiasi Logika Simbolik), tetapi istilah terakhir sekarang digunakan untuk aspek-aspek tertentu dari teori pembuktian.

Sejarah
Logika matematika adalah nama yang diberikan oleh Giuseppe Peano untuk apa yang juga dikenal sebagai logika simbolik. Dalam versi klasiknya, aspek dasarnya menyerupai logika Aristoteles, tetapi ditulis menggunakan notasi simbolik daripada bahasa alami. Upaya untuk memperlakukan operasi logika formal dengan cara simbolis atau aljabar dilakukan oleh beberapa matematikawan yang lebih filosofis, seperti Leibniz dan Lambert; tetapi kerja keras mereka tetap sedikit diketahui dan terisolasi. Adalah George Boole dan kemudian Augustus De Morgan, di pertengahan abad kesembilan belas, yang menyajikan cara matematis yang sistematis mengenai logika. Doktrin logika tradisional Aristotelian direformasi dan diselesaikan; dan darinya dikembangkan instrumen untuk menyelidiki konsep dasar matematika. Akan menyesatkan untuk mengatakan bahwa kontroversi mendasar yang hidup pada periode 1900–1925 semuanya telah diselesaikan; tetapi filsafat matematika sangat diperjelas oleh logika "baru".

Sementara perkembangan logika Yunani sangat menekankan pada bentuk-bentuk argumen, sikap logika matematika saat ini dapat diringkas sebagai studi kombinatorial konten. Ini mencakup dimensi sintaksis dan semantik. Sintaksis berkaitan dengan struktur yang benar atau formal dari string simbol dalam bahasa formal, seperti, misalnya, mengirim string dari bahasa formal ke program compiler untuk menulisnya sebagai urutan instruksi mesin. Semantik berkaitan dengan interpretasi atau penggunaan serangkaian simbol, seperti, misalnya, membangun model tertentu atau seluruh rangkaiannya, dalam teori model. Kajian matematika ini dari luar dikenal dengan istilah metamatematika.

Beberapa publikasi penting adalah Begriffsschrift oleh Gottlob Frege, Studies in Logic oleh Charles Peirce, Principia Mathematica oleh Bertrand Russell dan Alfred North Whitehead, dan On Formal Undecidable Propositions of Principia Mathematica and Related Systems oleh Kurt Gödel.

Logika formal
Pada intinya, logika matematika berkaitan dengan konsep matematika yang diekspresikan menggunakan sistem logika formal. Sistem logika orde pertama adalah yang paling banyak dipelajari karena penerapannya pada dasar matematika dan karena sifat-sifatnya yang diinginkan. Logika klasik yang lebih kuat seperti logika orde kedua atau logika infinitary juga dipelajari, bersama dengan logika nonklasik seperti logika intuitionistic.

Bidang logika matematika
"Handbook of Mathematical Logic" karya Barwise (1977) membagi logika matematika menjadi empat bagian:

Teori himpunan adalah studi tentang himpunan, yang merupakan kumpulan abstrak dari objek. Konsep dasar teori himpunan seperti himpunan bagian dan komplemen relatif sering disebut teori himpunan naif. Penelitian modern berada di bidang teori himpunan aksiomatik, yang menggunakan metode logis untuk mempelajari proposisi mana yang dapat dibuktikan dalam berbagai teori formal seperti teori himpunan Zermelo-Frankel, yang dikenal sebagai ZFC, atau teori himpunan Yayasan Baru, yang dikenal sebagai NF.

Teori pembuktian adalah studi tentang bukti formal dalam berbagai sistem deduksi logis. Bukti-bukti ini direpresentasikan sebagai objek matematika formal, memfasilitasi analisis mereka dengan teknik matematika. Frege bekerja pada bukti matematis dan memformalkan gagasan tentang bukti.

Teori model mempelajari model dari berbagai teori formal. Himpunan semua model teori tertentu disebut kelas dasar. Teori model klasik berusaha untuk menentukan sifat-sifat model dalam kelas dasar tertentu, atau menentukan apakah kelas struktur tertentu membentuk kelas dasar. Metode eliminasi quantifier digunakan untuk menunjukkan bahwa model teori tertentu tidak bisa terlalu rumit.

Teori rekursi, juga disebut teori komputabilitas, mempelajari sifat-sifat fungsi yang dapat dihitung dan derajat Turing, yang membagi fungsi yang tidak dapat dihitung menjadi himpunan yang memiliki tingkat tidak dapat dihitung yang sama. Bidang ini telah berkembang untuk memasukkan studi komputabilitas umum dan definabilitas. Di bidang ini, teori rekursi tumpang tindih dengan teori bukti dan teori himpunan deskriptif yang efektif.
Garis batas antara bidang-bidang ini, dan juga antara logika matematika dan bidang matematika lainnya, tidak selalu tajam; misalnya, teorema ketidaklengkapan Gödel menandai tidak hanya tonggak sejarah dalam teori rekursi dan teori pembuktian, tetapi juga mengarah pada teorema Loeb, yang penting dalam logika modal. Bidang matematika teori kategori menggunakan banyak metode aksiomatik formal yang mirip dengan yang digunakan dalam logika matematika, tetapi teori kategori biasanya tidak dianggap sebagai subbidang logika matematika.

Koneksi dengan ilmu komputer
Ada banyak hubungan antara logika matematika dan ilmu komputer. Banyak pionir awal dalam ilmu komputer, seperti Alan Turing, juga matematikawan dan ahli logika.

Kajian teori komputabilitas dalam ilmu komputer erat kaitannya dengan kajian komputabilitas dalam logika matematika. Namun ada perbedaan penekanan. Ilmuwan komputer sering fokus pada bahasa pemrograman konkret dan komputabilitas yang layak, sementara peneliti dalam logika matematika sering fokus pada komputabilitas sebagai konsep teoritis dan noncomputability.

Studi tentang semantik bahasa pemrograman terkait dengan teori model, seperti halnya verifikasi program (khususnya, pengecekan model). Isomorfisme Curry-Howard antara pembuktian dan program berhubungan dengan teori pembuktian; logika intuitionistic dan logika linier yang signifikan di sini. Kalkulus seperti kalkulus lambda dan logika kombinatori saat ini dipelajari terutama sebagai bahasa pemrograman yang diidealkan.

Ilmu komputer juga berkontribusi pada matematika dengan mengembangkan teknik untuk pemeriksaan otomatis atau bahkan menemukan bukti, seperti pembuktian teorema otomatis dan pemrograman logika.

Hasil terobosan
Teorema Löwenheim–Skolem (1919) menunjukkan bahwa jika himpunan kalimat dalam bahasa orde pertama yang dapat dihitung memiliki model tak hingga, maka ia memiliki setidaknya satu model untuk setiap kardinalitas tak hingga.
Teorema kelengkapan Gödel (1929) menetapkan kesetaraan antara definisi semantik dan sintaksis konsekuensi logis dalam logika orde pertama.
Teorema ketidaklengkapan Gödel (1931) menunjukkan bahwa tidak ada sistem formal yang cukup kuat yang dapat membuktikan konsistensinya sendiri.
Ketidakterpecahan algoritmik dari Entscheidungsproblem, yang didirikan secara independen oleh Alan Turing dan Alonzo Church pada tahun 1936, menunjukkan bahwa tidak ada program komputer yang dapat digunakan untuk memutuskan dengan benar apakah pernyataan matematis arbitrer itu benar.
Independensi hipotesis kontinum dari ZFC menunjukkan bahwa bukti dasar atau penolakan hipotesis ini tidak mungkin. Fakta bahwa hipotesis kontinum konsisten dengan ZFC (jika ZFC sendiri konsisten) dibuktikan oleh Gödel pada tahun 1940. Fakta bahwa negasi hipotesis kontinum konsisten dengan ZFC (jika ZFC konsisten) dibuktikan oleh Paul Cohen pada tahun 1963 .
Ketidakterpecahan algoritmik dari masalah kesepuluh Hilbert, yang dibuat oleh Yuri Matiyasevich pada tahun 1970, menunjukkan bahwa tidak mungkin bagi program komputer mana pun untuk memutuskan dengan benar apakah polinomial multivariat dengan koefisien bilangan bulat memiliki akar bilangan bulat.

Tag.

contoh soal logika matematika dan pembahasanya
materi logika matematika
contoh logika matematika
logika matematika kelas 11
logika matematika pdf
logika matematika sd
simbol simbol logika matematika
contoh kalimat implikasi
30 soal logika matematika
contoh soal logika matematika dan pembahasanya
contoh soal logika matematika dan jawabannya kelas 11
soal logika matematika smp
soal logika matematika essay
soal logika matematika dan pembahasannya pdf
contoh soal logika matematika diskrit dan penyelesaiannya
soal logika matematika sd

on Thursday, June 17, 2021 | , , | A comment?

Pelajaran Matematika VEKTOR

 

vektor, dalam matematika, adalah besaran yang memiliki besar dan arah tetapi tidak memiliki posisi. digambarkan dengan ruas garis yang ujungnya berupa panah untuk menunjukkan arah.

Contoh besaran tersebut adalah kecepatan dan percepatan. Dalam bentuk modernnya, vektor muncul di akhir abad ke-19 ketika Josiah Willard Gibbs dan Oliver Heaviside (masing-masing dari Amerika Serikat dan Inggris) secara independen mengembangkan analisis vektor untuk mengekspresikan hukum baru elektromagnetisme yang ditemukan oleh fisikawan Skotlandia James Clerk Maxwell. Sejak saat itu, vektor menjadi penting dalam fisika, mekanika, teknik elektro, dan ilmu-ilmu lain untuk menggambarkan gaya secara matematis.


Untuk melanjutkannya dalam bentuk rumus, perhitungan dan cara-cara bisa di klik soal dan pembahasan :
Vektor dapat divisualisasikan sebagai segmen garis berarah yang panjangnya adalah besarannya. Karena hanya besar dan arah dari suatu materi vektor, setiap segmen berarah dapat digantikan oleh salah satu dari panjang dan arah yang sama tetapi dimulai pada titik lain, seperti titik asal sistem koordinat. Vektor biasanya dilambangkan dengan huruf tebal, seperti v. Besar, atau panjang suatu vektor, ditunjukkan oleh |v|, atau v, yang mewakili besaran satu dimensi (seperti bilangan biasa) yang dikenal sebagai skalar. Mengalikan vektor dengan skalar mengubah panjang vektor tetapi tidak mengubah arahnya, kecuali mengalikan dengan angka negatif akan membalikkan arah panah vektor. Misalnya, mengalikan vektor dengan 1/2 akan menghasilkan vektor setengah panjang dalam arah yang sama, sedangkan mengalikan vektor dengan 2 akan menghasilkan vektor dua kali lebih panjang tetapi menunjuk ke arah yang berlawanan.

Dua buah vektor dapat dijumlahkan atau dikurangkan. Misalnya, untuk menambah atau mengurangi vektor v dan w secara grafis (lihat diagram), pindahkan masing-masing ke titik asal dan lengkapi jajar genjang yang dibentuk oleh dua vektor; v + w adalah salah satu vektor diagonal jajar genjang, dan v - w adalah vektor diagonal lainnya.

Ada dua cara berbeda untuk mengalikan dua vektor. Salib, atau vektor, produk menghasilkan vektor lain yang dilambangkan dengan v × w. Besarnya perkalian silang diberikan oleh |v × w| = vw sin , di mana adalah sudut terkecil antara vektor (dengan "ekor" mereka ditempatkan bersama). Arah v × w tegak lurus terhadap v dan w, dan arahnya dapat divisualisasikan dengan aturan tangan kanan, seperti yang ditunjukkan pada gambar. Perkalian silang sering digunakan untuk mendapatkan "normal" (garis tegak lurus) ke permukaan di beberapa titik, dan itu terjadi dalam perhitungan torsi dan gaya magnet pada partikel bermuatan yang bergerak.

Cara lain untuk mengalikan dua vektor bersama-sama disebut perkalian titik, atau kadang-kadang perkalian skalar karena menghasilkan skalar. Hasil kali titik diberikan oleh v w = vw cos θ, di mana θ adalah sudut terkecil antara vektor. Perkalian titik digunakan untuk mencari sudut antara dua buah vektor. (Perhatikan bahwa hasil kali titik adalah nol ketika vektor-vektornya tegak lurus.) Aplikasi fisik yang umum adalah mencari kerja W yang dilakukan oleh gaya konstan F yang bekerja pada benda bergerak d; usaha diberikan oleh W = Fd cos θ.

Dalam matematika dan fisika, vektor adalah elemen dari ruang vektor. Untuk banyak ruang vektor tertentu, vektor telah menerima nama tertentu, yang tercantum di bawah ini. Secara umum, vektor Euclidean adalah objek geometris dengan panjang dan arah (dan sering direpresentasikan sebagai sinar). Vektor tersebut dapat ditambahkan satu sama lain atau diskalakan menggunakan aljabar vektor. Sejalan dengan itu, ansambel vektor disebut ruang vektor. Objek-objek ini adalah subjek aljabar linier dan dapat dicirikan oleh dimensinya.

Secara historis, vektor diperkenalkan dalam geometri dan fisika (biasanya dalam mekanika) sebelum formalisasi konsep ruang vektor. (Bahkan, kata Latin vektor berarti "pembawa".) Oleh karena itu, orang sering berbicara tentang vektor tanpa menentukan ruang vektor tempat mereka berada. Secara khusus, dalam ruang Euclidean, seseorang mempertimbangkan vektor spasial, juga disebut vektor Euclidean yang digunakan untuk mewakili besaran yang memiliki besar dan arah, dan dapat ditambahkan, dikurangkan dan diperkecil (yaitu dikalikan dengan bilangan real) untuk membentuk ruang vektor . 

Dalam matematika, fisika, dan teknik, ruang vektor (juga disebut ruang linier) adalah sekumpulan objek yang disebut vektor, yang dapat dijumlahkan dan dikalikan ("diukur") dengan bilangan yang disebut skalar. Skalar seringkali merupakan bilangan real, tetapi beberapa ruang vektor memiliki perkalian skalar dengan bilangan kompleks atau, umumnya, dengan skalar dari bidang matematika apa pun. Operasi penjumlahan vektor dan perkalian skalar harus memenuhi persyaratan tertentu, yang disebut aksioma vektor (tercantum di bawah dalam Definisi ). Untuk menentukan apakah skalar dalam ruang vektor tertentu adalah bilangan real atau bilangan kompleks, istilah ruang vektor nyata dan ruang vektor kompleks sering digunakan.

Himpunan vektor Euclidean tertentu adalah contoh umum dari ruang vektor. Mereka mewakili kuantitas fisik seperti gaya, di mana dua gaya dari jenis yang sama dapat ditambahkan untuk menghasilkan yang ketiga, dan perkalian vektor gaya dengan pengganda nyata adalah vektor gaya lainnya. Dengan cara yang sama (tetapi dalam pengertian yang lebih geometris), vektor-vektor yang mewakili perpindahan dalam bidang atau ruang tiga dimensi juga membentuk ruang-ruang vektor. Vektor dalam ruang vektor tidak harus berupa objek seperti panah seperti yang muncul dalam contoh yang disebutkan: vektor dianggap sebagai objek matematika abstrak dengan sifat tertentu, yang dalam beberapa kasus dapat divisualisasikan sebagai panah.

Ruang vektor adalah subjek aljabar linier dan dicirikan dengan baik oleh dimensinya, yang, secara kasar, menentukan jumlah arah independen dalam ruang. Ruang vektor berdimensi tak hingga muncul secara alami dalam analisis matematis sebagai ruang fungsi, yang vektornya adalah fungsi. Ruang vektor ini umumnya diberkahi dengan beberapa struktur tambahan seperti topologi, yang memungkinkan pertimbangan masalah kedekatan dan kontinuitas. Di antara topologi ini, yang didefinisikan oleh norma atau produk dalam lebih umum digunakan (dilengkapi dengan gagasan jarak antara dua vektor). Ini khususnya kasus ruang Banach dan ruang Hilbert, yang merupakan dasar dalam analisis matematis.

Secara historis, ide-ide pertama yang mengarah ke ruang vektor dapat ditelusuri kembali sejauh geometri analitik abad ke-17, matriks, sistem persamaan linier, dan vektor Euclidean. Tehnik modern yang lebih abstrak, pertama kali dirumuskan oleh Giuseppe Peano pada tahun 1888, mencakup objek yang lebih umum daripada ruang Euclidean, tetapi sebagian besar teori dapat dilihat sebagai perluasan dari ide-ide geometri klasik seperti garis, bidang, dan analog dimensinya yang lebih tinggi.

Saat ini, ruang vektor diterapkan di seluruh matematika, sains, dan teknik. Mereka adalah gagasan aljabar linier yang tepat untuk menangani sistem persamaan linier. Mereka menawarkan kerangka kerja untuk ekspansi Fourier, yang digunakan dalam rutinitas kompresi gambar, dan mereka menyediakan lingkungan yang dapat digunakan untuk teknik solusi untuk persamaan diferensial parsial. Lebih jauh lagi, ruang vektor memberikan cara abstrak, bebas koordinat untuk menangani objek geometris dan fisik seperti tensor. Hal ini pada gilirannya memungkinkan pemeriksaan sifat lokal manifold dengan teknik linierisasi. Ruang vektor dapat digeneralisasikan dalam beberapa cara, yang mengarah ke gagasan yang lebih maju dalam geometri dan aljabar abstrak.

Tag.

vektor fisika
a.b vektor
contoh soal vektor
rumus vektor
contoh soal vektor matematika dan penyelesaiannya kelas 10
cara mencari vektor a
besaran vektor
panjang vektor
20 contoh soal vektor matematika dan pembahasannya
vektor adalah
vektor matematika teknik
komponen vektor matematika
contoh komponen vektor matematika
materi vektor matematika kelas 11
aplikasi vektor matematika
contoh soal vektor matematika dan penyelesaiannya kelas
soal pilihan ganda vektor matematika
contoh soal vektor matematika dan pembahasannya pdf
contoh soal vektor matematika dan penyelesaiannya kelas 11
bank soal vektor matematika doc
contoh soal vektor matematika dan penyelesaiannya kelas 10 pdf
soal vektor matematika pdf
contoh soal vektor matematika dan penyelesaiannya kelas 10 brainly
20 contoh soal vektor matematika dan

on Tuesday, June 1, 2021 | , , | A comment?

Pelajaran Matematika Segiempat dan Segitiga

 

Segiempat adalah bangun datar yang dibatasi oleh empat ruas garis dan membentuk empat buah sudut. Segitiga adalah bangun datar yang dibatasi oleh tiga ruas garis dan membentuk tiga buah sudut. 

Segiempat dan segitiga mempunyai beberapa jenis dengan ciri dan sifat-sifatnya yang khusus. Berikut adalah soal-soal tentang hitungan, rumus dan sifat dan jenis segiempat dan segitiga beserta pembahasannya.



Segitiga adalah kurva tertutup atau poligon sederhana yang dibuat oleh tiga segmen garis. Dalam geometri Euclidean, setiap tiga titik, khususnya non-collinear, membentuk segitiga unik dan secara terpisah, bidang unik (dikenal sebagai ruang Euclidean dua dimensi).

Di sisi lain, dalam hal geometri bidang Euclidean, poligon yang memiliki empat sisi (atau sisi) bersama dengan empat simpul disebut segi empat. Kadang-kadang, istilah segi empat dapat digunakan dan kadang-kadang tetragon untuk keseragaman dengan segi lima (5-sisi) atau segi enam (6-sisi).

Pada dasarnya ada tiga jenis segitiga, yaitu:
  • Segitiga lancip: Ini adalah segitiga yang semua sudutnya lancip.
  • Segitiga siku-siku: Ini adalah bentuk segitiga di mana salah satu sudut tertentu adalah sudut siku-siku.
  • Segitiga Tumpul: Segitiga yang salah satu sudutnya tumpul disebut segitiga tumpul.
Selanjutnya, segitiga dapat dipisahkan tergantung pada jumlah sisi yang kongruen. Oleh karena itu, Kita dapat mengandalkan dua cara berbeda untuk mengklasifikasikan jenis-jenis segitiga:
  • Segitiga sembarang(Scalene), artinya setiap panjang sisi pada segitiga cenderung berbeda.
  • Sama sisi artinya setiap panjang sisi pada segitiga adalah sama.
  • Segitiga sama kaki berarti, paling sedikit dua dari panjang sisi segitiga sama panjang.
Jenis & Properti Segi Empat
Kita dapat mendefinisikan segi empat sebagai Poligon yang memiliki empat sisi. Ada lebih banyak properti yang terkait dengan segiempat dibandingkan dengan segitiga. Dalam segi empat, satu aspek yang menakjubkan adalah bahwa ia dapat memiliki sisi-sisi yang berhadapan sejajar.

Oleh karena itu, jika setiap sisi memiliki sisi yang berhadapan sejajar, bentuk ini disebut jajar genjang. Penting untuk dicatat bahwa, persegi panjang, belah ketupat (belah ketupat) dan bujur sangkar semuanya adalah jajaran genjang karena sisi-sisinya yang berhadapan sejajar (selalu). Selanjutnya, sebuah belah ketupat memiliki empat sisi yang sama panjang.

Segi empat yang memiliki sepasang sisi sejajar disebut trapesium. Menurut beberapa buku matematika, trapesium memiliki setidaknya satu pasang sisi sejajar. Artinya, ini akan membentuk jajar genjang jika ada dua set sisi sejajar, menjadikannya jenis trapesium khusus. Selain itu, seperti buku matematika lainnya, trapesium hanya memiliki satu pasang sisi sejajar; ini diikuti secara ketat dalam matematika tingkat sekolah menengah.

Sifat Geometri Segi Empat
a) Persegi
  • Sisi-sisi yang berhadapan sejajar, dengan semua sisinya sama
  • Besar sudut masing-masing 90°
  • Persegi memiliki empat simetri lipat
  • Orde simetri putar adalah 4
  • Diagonal-diagonalnya saling membagi dua pada sudut 90° atau siku-siku
b) persegi panjang
  • Sisi-sisi yang berhadapan sejajar dan sama besar
  • Semua sudut pada persegi panjang adalah 90°
  • simetri lipat adalah dua
  • Persegi panjang memiliki simetri putar 2
c) Jajaran genjang
  • Sisi-sisi yang berhadapan sejajar dan sama besar
  • Jajar genjang memiliki sudut yang berhadapan sama besar
  • Tidak ada garis simetri
  • Orde simetri putar adalah 2
d) Layang-layang
  1. Layang-layang memiliki satu simetri lipat
  2. Diagonal berpotongan pada sudut 90° atau siku-siku
Tag.

soal segitiga dan segiempat kelas 7
materi segiempat dan segitiga kelas 7 doc
materi segitiga dan segiempat kelas 7
sifat-sifat segiempat dan segitiga
contoh soal segiempat dan segitiga
rumus segiempat dan segitiga
soal akm segiempat dan segitiga
tugas segiempat dan segitiga kelas 7

on Tuesday, May 18, 2021 | , , | A comment?

Pelajaran Matematika Peluang (Probabilitas)

 

Peluang (Probabilitas) adalah cabang matematika tentang deskripsi numerik tentang seberapa besar kemungkinan suatu peristiwa terjadi, atau seberapa besar kemungkinan suatu proposisi itu benar. 


Untuk menyempurnakan teori ini, dapat di buka link dibawah ini dalam bentuk soal dan pembahasan


Peluang (Probabilitas) suatu peristiwa adalah angka antara 0 dan 1, di mana, secara kasar, 0 menunjukkan ketidakmungkinan peristiwa dan 1 menunjukkan kepastian. Semakin tinggi Peluang (Probabilitas) suatu peristiwa, semakin besar kemungkinan bahwa peristiwa itu akan terjadi. Contoh sederhana adalah pelemparan koin yang adil (tidak memihak). Karena koin itu adil, dua hasil ("kepala" dan "ekor") keduanya sama-sama mungkin; Peluang (Probabilitas) "kepala" sama dengan Peluang (Probabilitas) "ekor"; dan karena tidak ada hasil lain yang mungkin, Peluang (Probabilitas) "kepala" atau "ekor" adalah 1/2 (yang juga dapat ditulis sebagai 0,5 atau 50%).

Konsep-konsep ini telah diberikan formalisasi matematika aksiomatik dalam teori Peluang (Probabilitas), yang digunakan secara luas dalam bidang studi seperti statistik, matematika, sains, keuangan, perjudian, kecerdasan buatan, pembelajaran mesin, ilmu komputer, teori permainan, dan filsafat untuk, untuk contoh, menarik kesimpulan tentang frekuensi yang diharapkan dari peristiwa. Teori Peluang (Probabilitas) juga digunakan untuk menggambarkan mekanika dan keteraturan yang mendasari sistem yang kompleks.

Ketika berhadapan dengan eksperimen yang acak dan terdefinisi dengan baik dalam pengaturan teoretis murni (seperti melempar koin), Peluang (Probabilitas) dapat dijelaskan secara numerik dengan jumlah hasil yang diinginkan, dibagi dengan jumlah total semua hasil. Misalnya, melempar koin dua kali akan menghasilkan hasil "kepala-kepala", "kepala-ekor", "kepala-ekor", dan "ekor-ekor". Peluang (Probabilitas) mendapatkan hasil "kepala-kepala" adalah 1 dari 4 hasil, atau, dalam istilah numerik, 1/4, 0,25 atau 25%. Namun, ketika sampai pada aplikasi praktis, ada dua kategori utama interpretasi Peluang (Probabilitas) yang bersaing, yang penganutnya memiliki pandangan berbeda tentang sifat dasar Peluang (Probabilitas):
Objektivis menetapkan angka untuk menggambarkan beberapa keadaan objektif atau fisik. Versi Peluang (Probabilitas) objektif yang paling populer adalah Peluang (Probabilitas) frequentist, yang menyatakan bahwa Peluang (Probabilitas) peristiwa acak menunjukkan frekuensi relatif kemunculan hasil eksperimen ketika eksperimen diulang tanpa batas. Interpretasi ini menganggap Peluang (Probabilitas) sebagai frekuensi relatif "dalam jangka panjang" dari hasil. Modifikasi dari ini adalah Peluang (Probabilitas) kecenderungan, yang menafsirkan Peluang (Probabilitas) sebagai kecenderungan beberapa eksperimen untuk menghasilkan hasil tertentu, bahkan jika itu dilakukan hanya sekali.

Subjektivis menetapkan angka per Peluang (Probabilitas) subjektif, yaitu, sebagai tingkat kepercayaan. Tingkat kepercayaan telah ditafsirkan sebagai "harga di mana Anda akan membeli atau menjual taruhan yang membayar 1 unit utilitas jika E, 0 jika bukan E." Versi Peluang (Probabilitas) subjektif yang paling populer adalah Peluang (Probabilitas) Bayesian, yang mencakup pengetahuan ahli serta data eksperimen untuk menghasilkan Peluang (Probabilitas). Pengetahuan ahli diwakili oleh beberapa distribusi Peluang (Probabilitas) sebelumnya (subyektif). Data ini tergabung dalam fungsi kemungkinan. Produk dari prior dan kemungkinan, ketika dinormalisasi, menghasilkan distribusi Peluang (Probabilitas) posterior yang menggabungkan semua informasi yang diketahui hingga saat ini. Dengan teorema kesepakatan Aumann, agen Bayesian yang keyakinan sebelumnya serupa akan berakhir dengan keyakinan posterior serupa. Namun, prioritas yang cukup berbeda dapat menyebabkan kesimpulan yang berbeda, terlepas dari seberapa banyak informasi yang dibagikan oleh agen.

Peluang (Probabilitas) adalah kemungkinan atau peluang terjadinya suatu peristiwa.
Peluang (Probabilitas) = jumlah cara untuk mencapai keberhasilan / jumlah total hasil yang mungkin
Misalnya, peluang pelemparan koin dan menjadi kepala adalah , karena ada 1 cara untuk mendapatkan kepala dan jumlah hasil yang mungkin adalah 2 (kepala atau ekor). Kami menulis P(kepala) = .
Peluang sesuatu yang pasti terjadi adalah 1.
Peluang terjadinya sesuatu yang tidak mungkin terjadi adalah 0.
Peluang (Probabilitas) sesuatu yang tidak terjadi adalah 1 dikurangi Peluang (Probabilitas) bahwa hal itu akan terjadi.

Acara Tunggal

Contoh

Ada 6 manik-manik di dalam tas, 3 berwarna merah, 2 berwarna kuning dan 1 berwarna biru. Berapa peluang terambilnya kuning?

Peluangnya adalah jumlah kuning dalam kantong dibagi dengan jumlah bola, yaitu 2/6 = 1/3.

Contoh

Ada sebuah tas berisi bola-bola berwarna, merah, biru, hijau dan jingga. Bola diambil dan diganti. John melakukan ini 1000 kali dan memperoleh hasil sebagai berikut:

Jumlah bola biru yang terambil: 300
Jumlah bola merah: 200
Jumlah bola hijau: 450
Jumlah bola oranye: 50
a) Berapa peluang terambilnya bola hijau?

Untuk setiap 1000 bola yang diambil, 450 berwarna hijau. Oleh karena itu P(hijau) = 450/1000 = 0,45

b) Jika ada 100 bola di dalam kantong, berapa banyak bola yang kemungkinan berwarna hijau?

Percobaan menunjukkan bahwa 450 dari 1000 bola berwarna hijau. Oleh karena itu, dari 100 bola, 45 berwarna hijau (menggunakan rasio).

Beberapa Acara

Acara Independen dan Dependen

Misalkan sekarang kita mempertimbangkan Peluang (Probabilitas) 2 peristiwa terjadi. Misalnya, kita mungkin melempar 2 dadu dan mempertimbangkan Peluang (Probabilitas) bahwa keduanya adalah 6.

Kami menyebut dua peristiwa independen jika hasil dari salah satu peristiwa tidak mempengaruhi hasil yang lain. Sebagai contoh, jika kita melempar dua dadu, peluang munculnya angka 6 pada dadu kedua adalah sama, berapa pun yang kita peroleh dengan dadu pertama - tetap 1/6.

Di sisi lain, misalkan kita memiliki tas berisi 2 bola merah dan 2 bola biru. Jika kita mengambil 2 bola dari kantong, peluang terambilnya bola kedua berwarna biru tergantung pada warna bola pertama yang diambil. Jika bola pertama berwarna biru, akan ada 1 bola biru dan 2 bola merah di dalam kantong saat kita mengambil bola kedua. Jadi peluang terambilnya warna biru adalah 1/3. Akan tetapi, jika bola pertama berwarna merah, maka akan tersisa 1 bola merah dan 2 bola biru sehingga peluang terambilnya bola kedua berwarna biru adalah 2/3. Ketika Peluang (Probabilitas) satu peristiwa tergantung pada yang lain, peristiwa itu tergantung.

Ketika mencari tahu apa Peluang (Probabilitas) dari dua hal yang terjadi, ruang Peluang (Probabilitas)/kemungkinan dapat ditarik. Misalnya, jika Anda melempar dua dadu, berapa peluang Anda mendapatkan: a) 8, b) 9, c) 8 atau 9?

Kemungkinan

a) Gumpalan hitam menunjukkan cara mendapatkan 8 (a 2 dan a 6, a 3 dan a 5, ...). Ada 5 cara berbeda. Ruang peluang menunjukkan kepada kita bahwa ketika melempar 2 dadu, ada 36 kemungkinan yang berbeda (36 kotak). Dengan 5 dari kemungkinan ini, Anda akan mendapatkan 8. Oleh karena itu P(8) = 5/36 .
b) Gumpalan merah menunjukkan cara mendapatkan 9. Ada empat cara, oleh karena itu P(9) = 4/36 = 1/9.
c) Anda akan mendapatkan 8 atau 9 di salah satu kotak 'gumpalan'. Ada 9 semuanya, jadi P(8 atau 9) = 9/36 = 1/4 .

Pohon Peluang (Probabilitas)

Cara lain untuk merepresentasikan 2 atau lebih kejadian adalah pada pohon Peluang (Probabilitas).

Contoh

Dalam sebuah kantong terdapat 3 bola : merah, kuning, dan biru. Satu bola diambil, dan tidak diganti, dan kemudian bola lain diambil.

Pohon Peluang (Probabilitas)

Bola pertama bisa berwarna merah, kuning atau biru. Peluang (Probabilitas)nya adalah 1/3 untuk masing-masing. Jika diambil bola merah, maka akan tersisa dua bola, kuning dan biru. Peluang terambilnya bola kedua berwarna kuning adalah 1/2 dan peluang terambilnya bola kedua berwarna biru adalah 1/2. Logika yang sama dapat diterapkan pada kasus-kasus ketika bola kuning atau biru diambil terlebih dahulu.

Dalam contoh ini, pertanyaannya menyatakan bahwa bola tidak diganti. Jika ya, peluang terambilnya bola merah (dst.) untuk kedua kalinya akan sama dengan yang pertama (yaitu 1/3).

Aturan AND dan OR (Tingkat TINGGI)

Dalam contoh di atas, peluang terambilnya yang pertama berwarna merah adalah 1/3 dan yang kedua berwarna kuning adalah 1/2. Peluang terambilnya sebuah AND merah kemudian kuning adalah 1/3 × 1/2 = 1/6 (ini ditunjukkan di ujung cabang). Aturannya adalah:

Jika dua peristiwa A dan B saling bebas (ini berarti bahwa satu peristiwa tidak bergantung pada yang lain), maka peluang terjadinya A dan B ditemukan dengan mengalikan peluang terjadinya A dengan peluang terjadinya B.
Peluang terambilnya warna merah ATAU kuning terlebih dahulu adalah 1/3 + 1/3 = 2/3. Aturannya adalah:

Jika terdapat dua kejadian A dan B dan kedua kejadian tersebut tidak mungkin terjadi, maka peluang terjadinya A atau B adalah peluang terjadinya A + peluang terjadinya B.
Pada pohon Peluang (Probabilitas), ketika bergerak dari kiri ke kanan kita mengalikan dan ketika bergerak ke bawah kita menjumlahkan.

Contoh
Berapakah peluang terambilnya kuning dan merah pada sembarang urutan?
Ini sama dengan: berapa peluang terambilnya kuning DAN merah ATAU merah DAN kuning.
P(kuning dan merah) = 1/3 × 1/2 = 1/6
P(merah dan kuning) = 1/3 × 1/2 = 1/6
P(kuning dan merah atau merah dan kuning) = 1/6 + 1/6 = 1/3 

Kemungkinan
Peluang (Probabilitas) mendefinisikan kemungkinan terjadinya suatu peristiwa. Ada banyak situasi kehidupan nyata di mana kita mungkin harus memprediksi hasil dari suatu peristiwa. Kita mungkin yakin atau tidak yakin dengan hasil suatu peristiwa. Dalam kasus seperti itu, kami mengatakan bahwa ada kemungkinan peristiwa ini terjadi atau tidak terjadi. Peluang (Probabilitas) umumnya memiliki aplikasi yang hebat dalam permainan, dalam bisnis untuk membuat prediksi berbasis Peluang (Probabilitas), dan juga Peluang (Probabilitas) memiliki aplikasi yang luas di bidang kecerdasan buatan yang baru ini.

Peluang (Probabilitas) suatu peristiwa dapat dihitung dengan rumus Peluang (Probabilitas) dengan hanya membagi jumlah hasil yang diinginkan dengan jumlah total hasil yang mungkin. Nilai peluang suatu peristiwa untuk terjadi dapat terletak antara 0 dan 1 karena jumlah hasil yang diinginkan tidak pernah dapat melampaui jumlah total hasil. Juga, jumlah hasil yang menguntungkan tidak boleh negatif. Mari kita bahas dasar-dasar Peluang (Probabilitas) secara rinci di bagian berikut.

Apa itu Peluang (Probabilitas)?
Peluang (Probabilitas) dapat didefinisikan sebagai rasio jumlah hasil yang menguntungkan dengan jumlah total hasil dari suatu peristiwa. Untuk eksperimen yang memiliki jumlah hasil 'n', jumlah hasil yang disukai dapat dilambangkan dengan x. Rumus untuk menghitung peluang suatu kejadian adalah sebagai berikut.

Peluang (Probabilitas)(Peristiwa) = Hasil yang Menguntungkan/Total Hasil = x/n

Mari kita periksa aplikasi sederhana dari Peluang (Probabilitas) untuk memahaminya dengan lebih baik. Misalkan kita harus memprediksi tentang terjadinya hujan atau tidak. Jawaban atas pertanyaan ini adalah "Ya" atau "Tidak". Ada kemungkinan hujan atau tidak hujan. Di sini kita dapat menerapkan Peluang (Probabilitas). Peluang (Probabilitas) digunakan untuk memprediksi hasil dari pelemparan koin, pelemparan dadu, atau pengambilan kartu dari paket kartu remi.

Peluang (Probabilitas) diklasifikasikan menjadi Peluang (Probabilitas) teoritis dan Peluang (Probabilitas) eksperimental.

Terminologi Teori Peluang (Probabilitas)
Istilah-istilah berikut dalam Peluang (Probabilitas) membantu dalam pemahaman yang lebih baik tentang konsep-konsep Peluang (Probabilitas).

Percobaan: Percobaan atau operasi yang dilakukan untuk menghasilkan suatu hasil disebut percobaan.

Ruang Sampel: Semua hasil yang mungkin dari suatu percobaan bersama-sama membentuk ruang sampel. Misalnya, ruang sampel pelemparan uang logam adalah kepala dan ekor.

Hasil yang Menguntungkan: Suatu peristiwa yang telah menghasilkan hasil yang diinginkan atau peristiwa yang diharapkan disebut hasil yang menguntungkan. Misalnya, ketika kita melempar dua dadu, hasil yang mungkin/menguntungkan untuk mendapatkan jumlah angka pada kedua dadu adalah 4 adalah (1,3), (2,2), dan (3,1).

Percobaan: Percobaan menunjukkan melakukan percobaan acak.

Eksperimen Acak: Eksperimen yang memiliki serangkaian hasil yang ditentukan dengan baik disebut eksperimen acak. Misalnya, ketika kita melempar koin, kita tahu bahwa kita akan maju atau mundur, tetapi kita tidak yakin mana yang akan muncul.

Peristiwa: Jumlah total hasil percobaan acak disebut peristiwa.

Kemungkinan Kejadian yang Sama: Kejadian yang memiliki peluang atau peluang yang sama untuk terjadi disebut kejadian yang sama kemungkinannya. Hasil dari satu peristiwa tidak tergantung pada yang lain. Misalnya, ketika kita melempar koin, ada peluang yang sama untuk mendapatkan kepala atau ekor.

Peristiwa Lengkap: Ketika himpunan semua hasil percobaan sama dengan ruang sampel, kita menyebutnya peristiwa lengkap.

Peristiwa Saling Eksklusif: Peristiwa yang tidak dapat terjadi secara bersamaan disebut peristiwa saling lepas. Misalnya, iklim bisa panas atau dingin. Kita tidak bisa mengalami cuaca yang sama secara bersamaan.

Rumus Peluang (Probabilitas)
Rumus Peluang (Probabilitas) mendefinisikan kemungkinan terjadinya suatu peristiwa. Ini adalah rasio hasil yang menguntungkan dengan total hasil yang menguntungkan. Rumus Peluang (Probabilitas) dapat dinyatakan sebagai,
P(A)=jumlah hasil yang menguntungkan ke A / jumlah total hasil yang mungkin

di mana,

P(B) adalah peluang suatu kejadian 'B'.
n(B) adalah jumlah hasil yang menguntungkan dari suatu peristiwa 'B'.
n(S) adalah jumlah total kejadian yang terjadi dalam ruang sampel.
Rumus Peluang (Probabilitas) Berbeda
Rumus peluang dengan aturan penjumlahan: Setiap kali suatu peristiwa adalah gabungan dari dua peristiwa lainnya, katakanlah A dan B, maka
P(A atau B) = P(A) + P(B) - P(A∩B)
P(A B) = P(A) + P(B) - P(A∩B)

Rumus peluang dengan aturan komplementer: Setiap kali suatu peristiwa adalah pelengkap dari peristiwa lain, khususnya, jika A adalah suatu peristiwa, maka P(bukan A) = 1 - P(A) atau P(A') = 1 - P(A ).
P(A) + P(A′) = 1.

Rumus peluang dengan aturan bersyarat: Ketika peristiwa A telah diketahui telah terjadi dan peluang peristiwa B diinginkan, maka P(B, diberikan A) = P(A dan B), P(A, diberikan B). Hal ini dapat terjadi sebaliknya dalam kasus kejadian B.
P(B∣A) = P(A∩B)/P(A)
Rumus peluang dengan aturan perkalian: Setiap kali suatu peristiwa merupakan perpotongan dari dua peristiwa lain, yaitu peristiwa A dan B harus terjadi secara bersamaan. Maka P(A dan B) = P(A)⋅P(B).
P(A∩B) = P(A)⋅P(B∣A)

Contoh 1: Temukan peluang munculnya angka kurang dari 5 ketika sebuah dadu dilempar dengan menggunakan rumus peluang.

Soal

Mencari:Peluang muncul angka kurang dari 5
Diketahui: Ruang sampel = {1,2,3,4,5,6}
Mendapatkan angka kurang dari 5 = {1,2,3,4}
Oleh karena itu, n(S) = 6
n(A) = 4
Menggunakan Rumus Peluang (Probabilitas),
P(A) = (n(A))/(n(s))
p(A) = 4/6
m = 2/3

Jawaban: Peluang muncul angka kurang dari 5 adalah 2/3.

Contoh 2: Berapa peluang munculnya jumlah 9 ketika dua buah dadu dilempar?

Soal:

Ada total 36 kemungkinan ketika kita melempar dua dadu.
Untuk mendapatkan hasil yang diinginkan yaitu, 9, kita dapat memiliki hasil yang menguntungkan berikut.
(4,5),(5,4),(6,3)(3,6). Ada 4 hasil yang menguntungkan.
Peluang suatu kejadian P(E) = (Jumlah hasil yang menguntungkan) (Total hasil dalam ruang sampel)
Peluang muncul angka 9 = 4 36 = 1/9

Jawab: Jadi peluang munculnya jumlah 9 adalah 1/9.

Diagram Pohon Peluang (Probabilitas)
Diagram pohon dalam Peluang (Probabilitas) adalah representasi visual yang membantu dalam menemukan hasil yang mungkin atau Peluang (Probabilitas) suatu peristiwa terjadi atau tidak terjadi. Diagram pohon untuk lemparan koin yang diberikan di bawah ini membantu dalam memahami kemungkinan hasil ketika sebuah koin dilempar dan dengan demikian dalam menemukan Peluang (Probabilitas) mendapatkan kepala atau ekor ketika sebuah koin dilempar.

Jenis Peluang (Probabilitas)
Mungkin ada perspektif atau jenis Peluang (Probabilitas) yang berbeda berdasarkan pada sifat hasil atau pendekatan yang diikuti saat menemukan kemungkinan suatu peristiwa terjadi. Empat jenis peluang tersebut adalah,

  • Peluang (Probabilitas) Klasik
  • Peluang (Probabilitas) Empiris
  • Peluang (Probabilitas) Subyektif
  • Peluang (Probabilitas) Aksiomatik

Peluang (Probabilitas) Klasik
Peluang (Probabilitas) klasik, sering disebut sebagai "priori" atau "Peluang (Probabilitas) teoretis", menyatakan bahwa dalam sebuah eksperimen di mana ada B hasil yang kemungkinannya sama, dan kejadian X memiliki tepat A dari hasil ini, maka Peluang (Probabilitas) X adalah A/B, atau P(X) = A/B. Misalnya, ketika dadu yang adil dilempar, ada enam kemungkinan hasil yang sama-sama mungkin. Artinya, ada peluang 1/6 untuk melempar setiap angka pada dadu.

Peluang (Probabilitas) Empiris
Peluang (Probabilitas) empiris atau perspektif eksperimental mengevaluasi Peluang (Probabilitas) melalui eksperimen pemikiran. Misalnya, jika sebuah dadu berbobot dilempar, sehingga kita tidak tahu sisi mana yang memiliki bobot, maka kita bisa mendapatkan ide untuk Peluang (Probabilitas) setiap hasil dengan menggulung dadu beberapa kali dan menghitung proporsi kali dadu memberikan hasil itu dan dengan demikian menemukan Peluang (Probabilitas) hasil itu.

Peluang (Probabilitas) Subyektif
Peluang (Probabilitas) subyektif mempertimbangkan keyakinan individu tentang suatu peristiwa yang terjadi. Misalnya, kemungkinan tim tertentu memenangkan pertandingan sepak bola berdasarkan pendapat penggemar lebih bergantung pada keyakinan dan perasaan mereka sendiri dan bukan pada perhitungan matematis formal.

Peluang (Probabilitas) Aksiomatik
Dalam Peluang (Probabilitas) aksiomatik, seperangkat aturan atau aksioma oleh Kolmogorov diterapkan pada semua tipe. Peluang terjadinya atau tidak terjadinya suatu peristiwa dapat diukur dengan penerapan aksioma-aksioma ini, diberikan sebagai,

Peluang (Probabilitas) terkecil yang mungkin adalah nol, dan yang terbesar adalah satu.
Suatu kejadian yang pasti mempunyai peluang sama dengan satu.
Dua peristiwa yang saling eksklusif tidak dapat terjadi secara bersamaan, sedangkan penyatuan peristiwa mengatakan hanya satu dari mereka yang dapat terjadi.

Mencari Peluang Suatu Kejadian
Dalam suatu eksperimen, peluang suatu peristiwa adalah kemungkinan terjadinya peristiwa itu. Peluang (Probabilitas) dari setiap peristiwa adalah nilai antara (dan termasuk) "0" dan "1".

Peristiwa dalam Peluang (Probabilitas)
Dalam teori Peluang (Probabilitas), suatu peristiwa adalah himpunan hasil dari suatu eksperimen atau himpunan bagian dari ruang sampel.

Jika P(E) menyatakan peluang suatu kejadian E, maka, kita memiliki,
P(E) = 0 jika dan hanya jika E adalah kejadian yang tidak mungkin.
P(E) = 1 jika dan hanya jika E adalah kejadian tertentu.
0 P(E) 1.
Misalkan, kita diberi dua kejadian, "A" dan "B", maka peluang kejadian A, P(A) > P(B) jika dan hanya jika kejadian "A" lebih mungkin terjadi daripada kejadian "B ". Ruang sampel(S) adalah himpunan semua hasil yang mungkin dari suatu percobaan dan n(S) menyatakan jumlah hasil dalam ruang sampel.

P(E) = n(E)/n(S)

P(E’) = (n(S) - n(E))/n(S) = 1 - (n(E)/n(S))

E’ menyatakan bahwa peristiwa itu tidak akan terjadi.

Oleh karena itu, sekarang kita juga dapat menyimpulkan bahwa, P(E) + P(E’) = 1
Peluang Lemparan Koin
Sekarang mari kita lihat peluang pelemparan koin. Cukup sering dalam permainan seperti kriket, untuk membuat keputusan siapa yang akan bermain bowling atau bat lebih dulu, terkadang kita menggunakan lemparan koin dan memutuskan berdasarkan hasil lemparan. Mari kita periksa bagaimana kita dapat menggunakan konsep Peluang (Probabilitas) dalam pelemparan satu koin. Selanjutnya, kita juga akan melihat pelemparan dua dan tiga yang datang masing-masing.

Melempar Koin
Satu koin pada pelemparan memiliki dua hasil, kepala, dan ekor. Konsep Peluang (Probabilitas) yang merupakan rasio hasil yang menguntungkan dengan jumlah total hasil dapat digunakan untuk menemukan Peluang (Probabilitas) mendapatkan kepala dan Peluang (Probabilitas) mendapatkan ekor.

Jumlah total hasil yang mungkin = 2; Ruang Sampel = {H, T}; H: Kepala, T: Ekor

P(H) = Jumlah kepala/Total hasil = 1/2
P(T)= Jumlah Ekor/ Total hasil = 1/2
Melempar Dua Koin
Dalam proses melempar dua koin, kami memiliki total empat hasil. Rumus Peluang (Probabilitas) dapat digunakan untuk menemukan Peluang (Probabilitas) dua kepala, satu kepala, tidak ada kepala, dan Peluang (Probabilitas) serupa dapat dihitung untuk jumlah ekor. Perhitungan Peluang (Probabilitas) untuk dua kepala adalah sebagai berikut.

Jumlah hasil = 4; Ruang Sampel = {(H, H), (H, T), (T, H), (T, T)}

P(2H) = P(0 T) = Jumlah hasil dengan dua kepala/Total Hasil = 1/4
P(1H) = P(1T) = Jumlah hasil dengan hanya satu kepala/Total Hasil = 2/4 = 1/2
P(0H) = (2T) = Jumlah hasil dengan dua kepala/Total Hasil = 1/4
Melempar Tiga Koin
Banyaknya hasil total pelemparan tiga uang logam secara bersamaan sama dengan 23 = 8. Untuk hasil tersebut, kita dapat menemukan peluang muncul satu kepala, dua kepala, tiga kepala, dan tidak ada kepala. Peluang (Probabilitas) serupa juga dapat dihitung untuk jumlah ekor.

Jumlah hasil = 23 = 8 Ruang Sampel = {(H, H, H), (H, H, T), (H, T, H), (T, H, H), (T, T, H ), (T, H, T), (H, T, T), (T, T, T)}

P(0H) = P(3T) = Jumlah hasil tanpa kepala/Total Hasil = 1/8
P(1H) = P(2T) = Jumlah Hasil dengan satu kepala/Total Hasil = 3/8
P(2H) = P(1T) = Jumlah hasil dengan dua kepala /Total Hasil = 3/8
P(3H) = P(0T) = Jumlah hasil dengan tiga kepala/Total Hasil = 1/8
Peluang (Probabilitas) Pelemparan Dadu
Banyak permainan menggunakan dadu untuk memutuskan gerakan pemain di seluruh permainan. Sebuah dadu memiliki enam kemungkinan hasil dan hasil dari sebuah dadu adalah permainan peluang dan dapat diperoleh dengan menggunakan konsep peluang. Beberapa permainan juga menggunakan dua dadu, dan ada banyak peluang yang dapat dihitung untuk hasil menggunakan dua dadu. Sekarang mari kita periksa hasilnya, peluangnya untuk masing-masing satu dadu dan dua dadu.

Melempar Satu Dadu
Banyaknya hasil pelemparan sebuah dadu adalah 6, dan ruang sampelnya adalah {1, 2, 3, 4, 5, 6}. Di sini kita akan menghitung beberapa Peluang (Probabilitas) berikut untuk membantu dalam pemahaman yang lebih baik tentang konsep Peluang (Probabilitas) pada pelemparan satu dadu.

P(Bilangan Genap) = Banyaknya hasil bilangan genap/Total Hasil = 3/6 = 1/2
P(Bilangan Ganjil) = Banyaknya hasil bilangan ganjil/Total Hasil = 3/6 = 1/2
P(Bilangan Prima) = Jumlah hasil bilangan prima/Total Hasil = 3/6 = 1/2
Melempar Dua Dadu
Banyaknya hasil pelemparan dua buah dadu adalah 62 = 36. Gambar berikut menunjukkan ruang sampel dari 36 hasil pelemparan dua buah dadu.

Mari kita periksa beberapa Peluang (Probabilitas) hasil dari dua dadu. Peluang (Probabilitas)nya adalah sebagai berikut.

Peluang mendapatkan doublet(Bilangan yang sama) = 6/36 = 1/6
Peluang terambilnya angka 3 pada paling sedikit satu dadu = 11/36
Peluang muncul jumlah 7 = 6/36 = 1/6
Seperti yang kita lihat, ketika kita melempar satu dadu, ada 6 kemungkinan. Ketika kita melempar dua dadu, ada 36 kemungkinan. Ketika kita melempar 3 dadu, kita mendapatkan 216 kemungkinan. Jadi rumus umum untuk menyatakan banyaknya hasil pada pelemparan dadu 'n' adalah 6n.

Peluang (Probabilitas) gambar Kartu
Dek yang berisi 52 kartu dikelompokkan menjadi empat setelan tongkat, berlian, hati, dan sekop. Masing-masing gada, berlian, hati, dan sekop masing-masing memiliki 13 kartu, yang berjumlah 52. Sekarang mari kita bahas peluang terambilnya kartu dari satu pak. Simbol pada kartu ditunjukkan di bawah ini. Sekop dan tongkat adalah kartu hitam. Hati dan berlian adalah kartu merah.
13 kartu di setiap suit adalah ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, jack, queen, king. Dalam hal ini, jack, ratu, dan raja disebut kartu wajah. Kita dapat memahami peluang kartu dari contoh berikut.

Peluang terambilnya kartu hitam adalah P(Kartu hitam) = 26/52 = 1/2
Peluang terambilnya kartu hati adalah P(Hati) = 13/52 = 1/4
Peluang terambilnya kartu bergambar adalah P(Kartu muka) = 12/52 = 3/13
Peluang terambilnya kartu bernomor 4 adalah P(4) = 4/52 = 1/13
Peluang terambilnya kartu merah bernomor 4 adalah P(4 Merah) = 2/52 = 1/26
Teorema Peluang (Probabilitas)
Teorema Peluang (Probabilitas) berikut sangat membantu untuk memahami penerapan Peluang (Probabilitas) dan juga melakukan banyak perhitungan yang melibatkan Peluang (Probabilitas).

Teorema 1: Jumlah peluang terjadinya suatu peristiwa dan tidak terjadinya suatu peristiwa sama dengan 1.
P(A)+P(¯A)=1
Teorema 2: Peluang (Probabilitas) suatu kejadian yang tidak mungkin atau Peluang (Probabilitas) suatu kejadian yang tidak terjadi selalu sama dengan 0.
P(ϕ)=0
Teorema 3: Peluang (Probabilitas) suatu kejadian pasti selalu sama dengan 1. P(A) = 1

Teorema 4: Peluang (Probabilitas) terjadinya suatu peristiwa selalu terletak antara 0 dan 1. 0 < P(A) < 1

Teorema 5: Jika ada dua kejadian A dan B, kita dapat menerapkan rumus gabungan dua himpunan dan kita dapat menurunkan rumus peluang terjadinya kejadian A atau kejadian B sebagai berikut.

P(A∪B)=P(A)+P(B)−P(A∩B)
Juga untuk dua kejadian yang saling lepas A dan B, kita memiliki P( A U B) = P(A) + P(B)

Teorema Bayes tentang Peluang Bersyarat
Teorema Bayes menggambarkan Peluang (Probabilitas) suatu peristiwa berdasarkan kondisi terjadinya peristiwa lain. Ini juga disebut Peluang (Probabilitas) bersyarat. Ini membantu dalam menghitung Peluang (Probabilitas) terjadinya satu peristiwa berdasarkan kondisi terjadinya peristiwa lain.

Sebagai contoh, mari kita asumsikan bahwa ada tiga kantong dengan masing-masing kantong berisi beberapa bola biru, hijau, dan kuning. Berapa peluang terambilnya bola kuning dari kantong ketiga? Karena ada bola berwarna biru dan hijau juga, kita dapat sampai pada Peluang (Probabilitas) berdasarkan kondisi ini juga. Peluang (Probabilitas) seperti itu disebut Peluang (Probabilitas) bersyarat.

Rumus untuk teorema Bayes adalah
P(A|B)=P(B|A)⋅P(A)P(B) dimana,
P(A|B) menunjukkan seberapa sering kejadian A terjadi dengan syarat B terjadi.

dimana, P(B|A)
 menunjukkan seberapa sering peristiwa B terjadi pada kondisi bahwa A terjadi.

P(A) peluang terjadinya kejadian A.

P(B) peluang terjadinya kejadian B.

Hukum Peluang (Probabilitas) Total
Jika ada n kejadian dalam suatu percobaan, maka jumlah peluang dari n kejadian tersebut selalu sama dengan 1.

P(A1)+P(A2)+P(A3)+....P(An)=1

Tag.

rumus peluang kejadian majemuk
peluang statistika
peluang adalah
peluang kejadian bersyarat
jenis-jenis peluang matematika
materi peluang smp
materi peluang pdf
materi peluang kuliah
cara menghitung probabilitas
probabilitas statistika adalah
contoh soal probabilitas statistika dan penyelesaiannya
probabilitas pdf
aturan probabilitas
ilmu dan probabilitas
contoh probabilitas
statistika dan probabilitas teknik sipil
materi peluang kelas 12
peluang statistika
peluang matematika
peluang dua dadu
peluang dadu
materi peluang smp
rumus peluang statistika
peluang empirik
contoh soal peluang dan pembahasannya pdf
soal peluang kelas 12
contoh soal peluang dan pembahasannya kelas 12
contoh soal peluang kelas 8
contoh soal peluang untuk mahasiswa
contoh soal peluang dan jawabannya
contoh soal peluang dan pembahasannya brainly
contoh soal peluang kelereng dan pembahasannya

on Saturday, May 15, 2021 | , , | A comment?